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Biological membranes deform in response to resident proteins leading to a coupling between membrane shape
and protein localization. Additionally, themembrane influences the function of membrane proteins. Here we re-
view contributions to this field from continuum elastic membrane models focusing on the class of models that
couple the protein to themembrane.While it has been argued that continuummodels cannot reproduce the dis-
tortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be over-
come by using chemically accurate representations of the protein. We outline our recent advances along these
lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with
fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of
continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes,
such as membrane morphological changes, that are currently beyond the scope of other computational ap-
proaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei
Noskov.
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1. Introduction

Biological membranes are crowded with transmembrane proteins
and peripherally associated proteins that carry out a host of tasks rang-
ing from ion and small molecule transport to cell motility. The distribu-
tion of proteins is highly variable and heterogeneous leading to
specialized compartments with dedicated chemistries, polarized cells
with distinct apical and basal membranes, and membrane structures
with intricate morphologies. In this review, we are interested in the
role that membrane proteins play in sculpting membrane shape as
well as how local membrane properties influence protein function.
The distinct shapes of many intracellular membrane structures are
often the result of specific membrane proteins as is the case for the
spherical vesicles that shuttle between the endoplasmic reticulum
(ER) and Golgi that have a defined protein coat composed of COPI or
COPII complexes [1], the convoluted folds of the inner mitochondrial
membrane whose cristea are created by rows of transmembrane F-
ATPase dimers [2], and ER tubular networks created by the homotypic
fusion of embedded proteins on opposingmembranes [3]. Additionally,
membranes can adopt exotic configurations such as the cubic phases, or
‘plumber's nightmares’, and the equilibrium between flat L α phase and
brane Proteins edited by J.C.
other membrane phases can be biased by the presence of membrane
proteins [4,5], which forms the basis of membrane protein crystalliza-
tion from the lipidic cubic phase (LCP) [4,6]. Meanwhile, themechanical
properties of the membrane can affect the biophysical properties of the
protein. For instance, the thickness of the membrane drives dimeriza-
tion of gramicidin channels, antibiotics that kill bacteria through the dis-
sipation of ion concentration gradients [7], in-plane tension and the
hydrophobic thickness of the membrane bias the opening and closing
of mechanosensitive channels in response to touch and osmotic stress
[8,9], and tension can induce redistribution of Slm1 proteins that subse-
quently lead to downstream signalling [10]. Additionally, the shape or
curvature of the membrane is thought to influence the probability of
alamethicin conductance states [11] and to allosterically regulate the
ion channel function of α-hemolysin [12], while also influencing the
mobility of proteins in the membrane [13].

There are several mechanisms by which membrane proteins are
thought to influence the shape ofmembranes, and herewe present sev-
eral top candidates loosely following thework of Kozlov and coworkers
[14,15]. We have grouped the shaping mechanisms into two main
categories:

• First, proteins can induce membrane deformations by forming a coat
around the membrane in which hydrophilic protein domains insert
into the bilayer while adjacent soluble domains impart forces on the
membrane surface. Two examples are the scaffolding mechanism
and protein crowding effect. The scaffolding machinery involves the
creation of a rigid protein coat composed of a protein template, such
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as clathrin in the case of endocytosis, that molds the membrane un-
derneath (Fig. 1A). COPI and COPII complexes, discussed above, fall
into this category since the array of proteins cover the membrane
causing bending and curvature to produce a final shape. Additionally,
the protein crowding effect gives rise to membrane bending through
protein–protein forces resulting from membrane bound proteins
[16,17]. As the density of bound proteins increases, the rate of ther-
mally driven protein–protein collisions of the soluble domains also in-
creases causing lateral steric pressure parallel to the membrane
surface that can drive bending (Fig. 1B).

• Second, membrane shaping can occur through changes induced by
the insertion of hydrophobic protein domains into the lipid bilayer.
Within this category two non-mutually exclusive mechanisms have
been proposed: local spontaneous curvature and the bilayer-couple
mechanism [14,18]. In the local spontaneous curvature mechanism,
the embedded protein interacts with the surrounding lipid molecules
to alter the membrane's local properties such as the propensity to
curve, which is known as the spontaneous curvature (Fig. 1C). For in-
stance, a shallow inserting amphipathic helix (circle) or conically
shaped transmembrane protein (wedge) may differentially distort
the packing of the lipid head-groups compared to the hydrocarbon
chains resulting in a local change of the spontaneous curvature. How-
ever, besides spontaneous curvature changes, the locally induced
packing distortions by inserted proteins can potentially change the
value of other bilayer parameters such as the Gaussian/mean bending
moduli, or compression modulus. In this manner, a few proteins in a
region may make the local membrane more accommodating toward
tubulating or budding into a vesicle. Proteins that contain BAR (Bin-
Amphiphysin-Rvs) domains, which are banana-shaped proteins that
have their own intrinsic curvature [19,20], deformmembranes poten-
tially through a local spontaneous curvature mechanism; however,
scaffolding may also be important [21–23]. Finally, the bilayer-
couple mechanism involves an area expansion of one leaflet of the
membrane with respect to the other (Fig. 1D). This can occur if a
large number of proteins partially insert into one leaflet causing a dif-
ferential area expansion. The area mismatch will cause in-plane
Fig. 1.How can proteins bendmembranes? A. Scaffoldmechanism. A rigid array of proteins (blu
new shape. B. Protein crowding mechanism. Thermally driven protein–protein collisions of b
bending. C. Spontaneous curvature mechanism. The proteins act locally to distort the surro
curvature. These local changes can give rise to new stable morphological structures such as
region over which the protein insertion induces local distortions. D. Bilayer-couple mechanism
area mismatch between the upper and lower leaflets resulting in stress that spreads globally
the stress in both leaflets.
compression on the protein side and tension in the opposing leaflet,
and the relief of this strain can cause large scale bending into cylindri-
cal, spherical and curved surfaces. Because the strain is spread over
the entire surface, this mechanism works as a global phenomenon
rather than a local one.
Different shaping mechanisms may be involved in the formation of
specific geometries as recently suggested for endophilin A1 [23],
where vesiculation and tubulation were found to be a function of the
protein depth of insertion. But given the membrane shaping mecha-
nisms are not mutually exclusive, it is possible that these mechanism
work in concert to generate various types of membrane curvature.
Membrane proteins adopt different conformations, and forces from
the lipids can bias these conformations. Thus, just as membrane pro-
teins can influence the shape of the surrounding membrane, the
local structure of the membrane can act back on the protein. There
are several ways that this can occur, such as hydrophobic mismatch.
In-plane tension can thinmembranes causing a decrease in the hydro-
phobic thickness, which causes tilting of hydrophobic stretches of
transmembrane proteins so that the greasy portions of the protein re-
main buried in the membrane core. Mechanosensitive channels, such
as MscS andMscL, are thought to gate in this manner, whereby mem-
brane thinning causes helix tilting and outward radial expansion that
opens a water filled pathway through the center of the channel [8]. A
second view of this gatingmechanism is that the in-plane tension acts
to expand the area of the channel through line tension at the
membrane-protein interface. Single channel studies have also demon-
strated that the membrane curvature can influence the conduction
state of ion channels, as is the case for hemolysins that lyse red
blood cells [12]. It is unclear how the physical forces and torques
from the membrane are imparted to the protein in this later case,
but it is likely to occur through a mechanism similar to the previous
example in which the local ordering of the lipids causes a reconfigura-
tion in the protein to minimize hydrophobic and electrostatic energy.
In addition to influencing protein function, membranesmay guide the
localization, diffusional properties, and protein–protein interactions of
membrane and membrane associated proteins.
e) assemble over themuchmore compliantmembrane deforming the entire system into a
ound proteins to the membrane surface can create significant lateral pressure and drive
unding lipid molecules and alter their elastic properties, such as the local spontaneous
tubules or vesicle budding events. Orange lipids inside the dashed boxes represent the
. The asymmetric insertion of many proteins on one side of the membrane generates an

over the entire surface. The generation of curvature relieves the in-plane components of

Image of Fig. 1


Fig. 2. Mathematical representation of the membrane. A. A cartoon model representing

the upper and lower leaflets and the corresponding lipid molecules. N
!

is the normal

vector of the bilayer midplane (dashed line), n! is the head-to-tail vector of the lipids,

and t
!

is the difference of these two vectors. B. The upper and lower surfaces representing
the head-group interfaces with the water from panel A (solid lines) and the bilayer
midplane (dashed line). The lipids have been removed in this purely mathematical repre-

sentation, but the vectorial descriptions N
!�

and n!�
remain.
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While there is emerging evidence that the interaction of the mem-
brane with resident membrane proteins is important to many biolog-
ical phenomena, it is difficult to elucidate these interactions both
experimentally and computationally. From an experimental perspec-
tive, this is a difficult problem because the length scales are small
and the lipid environment is dynamic making it difficult to probe via
standard high resolution techniques such as X-ray crystallography,
NMR and cryo-electron-microscopy. From a computational stand
point, the study of protein interactions with the membrane presents
its own challenges. Fully atomistic molecular dynamics (MD) simula-
tions can elucidate with very high spatial and temporal resolution the
interactions that the membrane has with the membrane protein. One
particularly illuminating example is the studies of N-BAR proteins
interacting with a membrane in which it is shown that themembrane
can adopt a curvature similar to the intrinsic curvature of the BAR do-
main [24,25]. However, typical simulations last for hundreds of nano-
seconds to microseconds, and even long multi-microsecond
simulations have highlighted the difficulty in capturing the local relax-
ation of the membrane to penetration by small amphipathic helices
[26]. The other difficulty is the size of relevant systems. Even small
highly curved vesicles contain thousands of lipids and millions of
atoms [27]. Propagating these large systems forward in time is compu-
tationally taxing resulting in even shorter simulation timescales.
Coarse-grained MD simulations are becoming more popular, and
theymake it possible to simulate larger systems by reducing the num-
ber of atoms at the expense of some loss of chemical detail [28–32].
However, many of the same problems inherent to fully atomistic MD
are still present in CG simulations. That is, timescales are often too
short to observe major reorganization events that involve long wave-
length, low energy conformational changes in the membrane [33,34].
An alternative to atomistic simulations is the use of continuum
methods to model the membrane and the surrounding aqueous envi-
ronment. Instead of explicitly representing every atom in the system,
or groups of atoms, the biophysical properties and shape of the mem-
brane are representedmathematically. Such a description dramatical-
ly reduces the computational load allowing for the determination of
equilibrium configurations over very long length scales. However,
chemical accuracy is lost and the mathematical equation can be very
difficult to solve. There is a long history of describing the shapes and
equilibrium fluctuations of membrane systems using elasticity theory
starting with the work of Helfrich [35] and Canham [36] in the early
1970s. The propensity to bend and adopt different shapes is dictated
by the material properties (elastic moduli) of the membrane, which
must be determined from experiment or atomistic simulation. How-
ever, once these values are known, a set of partial differential equa-
tions (PDEs) can be derived that satisfy the minimum energy
configurations of the membrane, and their shapes can be computed.
Several theoretical approaches have been developed to incorporate
the influence of membrane proteins into this framework. Initial stud-
ies focused on the membrane deformation energies of single particles
embedded in membranes with finite thickness, known as mattress
models [37–39]. Later in the 1990s, researchers became interested in
the interplay between embedded particles and whether membrane-
mediated interactions could give rise to attraction or repulsion
[40–42]. A common theme among all of these early studies is that
the protein is represented as a simple point particle or rigid cylinder,
and its influence on the surrounding membrane is included through
a boundary condition imposing height, angle, and/or curvature con-
straints at the membrane where it meets the protein. Unfortunately,
these models lack all of the complex geometric and chemical features
present in real proteins. Later, the Honig lab began to explore the en-
ergetics of alpha helices associating with model lipid bilayers using
an energy model with terms for continuum electrostatics [43], hydro-
phobic interactions, lipid perturbation effects, and other terms follow-
ing thework of Jacobs andWhite [44].Whilemembrane deformations
were not explicitly considered, the protein was treated with atomic
detail. This allowed for a description of the system with increased
chemical accuracy for the protein, while still using fast continuum cal-
culations to account for electrostatic and other energetic terms.
In this review,wewill focus on recent advances that havemerged con-
tinuummodels of themembranewith atomistic representations of the
embedded proteins. In Section 2, we will briefly outline the mathe-
matical and geometrical tools required to model thin sheets. Next, in
Section 3 we will present the Helfrich Hamiltonian and other com-
monly used continuum models to describe the energetic state of
pure membranes. We then survey in Section 4 ways in which the pro-
tein is coupled to themembrane, andwe outline the evolution of pro-
tein representations from simple point particles to realistic high
resolution structures. In Section 5, we highlight the recent advances
from several groups that have made progress in bridging continuum
membrane mechanics with atomistic representations of the protein,
while Section 6 provides a detailed view of the hybridmodel and asso-
ciated machinery developed in our lab to carry out these calculations.
In Section 7, we present an application of our hybrid atomistic-
continuum model showing that the predicted membrane deforma-
tions are in good agreementwith fully-atomisticMD simulationsmak-
ing it possible to explore the biological function ofmembrane proteins
and suggest testable hypotheses. Concluding remarks concerning fu-
ture directions and challenges are discussed in Section 8.
2. Membrane geometry

Lipid bilayers are fascinating soft-matter systems which self-
assemble from single molecules into very thin fluid films that can ex-
tend over macroscopic lateral scales. Therefore, the natural limit when
the lateral dimensions greatly exceed the thickness is to describe the
membrane as a two dimensional curved surface (single sheet) embed-
ded in a three dimensional space.We start by reviewing someof the im-
portant geometric elements and definitions required to describe
membranes in a continuum fashion including differences between a
two-sheet model that describes the upper and lower leaflets indepen-
dently versus a one-sheet model that represents the bilayer by a single
surface. For a more complete description of the differential geometry
tools necessary to model soft materials and membranes, we refer the
readers to work by Kamien [45] and Deserno [46]; here, we simplify
the discussion to themost essential elements needed to describe mem-
brane deformations in the small angle deflection limit.

The two-leaflet model is composed of two very thin surfaces
(monolayers) that are stacked upon each other at an equilibrium dis-
tance L0=2h0 (Fig. 2). From here on, we denote variables associated
with the upper and lower leaflets by + and - superscripts, respectively,
unless otherwise noted. We use a Monge Gauge parametrization of the
surfaces, such that each leaflet shape is described by a height function

Image of Fig. 2
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(h±(x,y)) [47]. Working within the linearized, small deflections limit,

the normal vector to each surface N
!�

is [45]:

N
!þ ¼ ∂hþ

∂x
;
∂hþ

∂y
;�1

� �
¼ ∇

!
hþ;�1

� �
;

N
!� ¼ � ∂h�

∂x
;
∂h�

∂y
;�1

� �
¼ � ∇

!
h�;�1

� �
;

ð1Þ

where the geometries are depicted in Fig. 2. The thickness variables
(u±(x1,x2)) represent compression or expansion perpendicular to
the plane of the membrane relative to the undeformed height ±h0:

u� x1; x2ð Þ ¼ h� x1; x2ð Þ∓h0: ð2Þ

It is also important to distinguish the truemonolayer surface in three
dimensional space (Γ±) from the two dimensional projection of the sur-
face used in calculations (Ω±) [48]:

dΓ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∇u�ð Þ2

q� �
dΩ�≈ 1þ ∇u�ð Þ2

2

" #
dΩ�; ð3Þ

where the dΩ± is the differential dx dy in the projected plane. Often the
bilayer geometry and energetics are represented by the dilation (d) and
bilayer midplane (h) as shown in Fig. 2:

d ¼ uþ � u�

2
; h ¼ hþ þ h�

2
: ð4Þ

For those cases where the in-plane compression is ignored, the bi-
layer can be represented by a single midplane surface (h) and the nor-
mal vector and projected surface area are defined analogously to
Eqs. (1) and (3).

3. Continuum elastic energy models of the membrane

Many theoreticalmodels have beendeveloped starting fromdifferent
view points [35,36,48–51], and they all reach similar a conclusion—the
crucial soft-mode is themembrane curvature deformation [46]. The sep-
aration of length scales between the thickness and lateral dimension of
lipid membranes makes it possible to construct a large-scale membrane
Hamiltonian that primarily depends on the curvature of the surface, and
then additional energetic terms concerning local lipid physics enter
through a small set of parameters that couple to the curvature [46].
The seminal work in this field comes from Canham [36] and Helfrich
[35]where they derived aHamiltonian,which is only a function ofmem-
brane geometry (Fig. 2):

EHelfrich�Canham ¼ ∫Γ σ þ Kc

2
2H � J0ð Þ2 þ KGK

	 

dΓ; ð5Þ
Fig. 3. Examples of curved surfaces. A. cylinder, B. spherical cap, and C. saddle. The geometry of
When R1 and R2 change in a bilayer there is a curvature energetic penalty in the Helfrich Ham
(inverse of the radius of curvature) H ¼ 1

2 ð 1
R1
þ 1

R2
Þ and the Gaussian Curvature is the product K
where σ penalizes the creation of new surface area Γ, 2H is the mean
curvature, K is the Gaussian curvature, J0 is the preferred curvature of
the membrane in the absence of external forces and torques, and KC

and KG are the bilayer bending modulus and Gaussian modulus, respec-
tively. The integral of σ corresponds to the total surface tension energy
(ES), while the second term is the mean curvature bending energy (EB),
and the last term is the Gaussian curvature energy (EG). The mean and
Gaussian curvatures are defined in the small angle limit as:

2H ¼ ∇
!� N!≈∇2h; K≈

∂2h
∂x2

� ∂
2h

∂y2
� ∂2h

∂y∂x

 !2

; ð6Þ

and they correspond to shapes shown in Fig. 3. For the chosen normal

vector N
!

in Fig. 2, positive curvature HN0 corresponds to a concave up
bilayer. Similarly, for the two-leaflet model, positive curvature at the
upper leaflet is a concave up shape, while positive curvature at the
lower leaflet is concave down.

Rewriting Eq. (5) in the small angle deflection limit we arrive at:

EHelfrich�Canham ¼ ∫
Ω

σ þ α
∇hð Þ2
2

þ Kc

2
∇2h� J0
� �2

þ KGK

 !
dx dy; ð7Þ

where the effective surface tension contribution is given by 2α=
2σ+Kc J0

2. Sinceσ is constant, it does not contribute to the equilibrium so-
lution, and it is commonly dropped (see Ref. [52] for instance). However,
the physical interpretation of α(σ) is complicated, and it has generated
significant controversy [46]. For amore indepthdescription ofmembrane
surface tension, we refer the reader to the work of Schmid [53], Diamant
[54] andWatson et al. [52]. Here we interpret σ as the conjugate variable
that opposes the addition of new area Γ, inwhich caseσ plays the role of a
chemical potential with the area per lipid constant.

The Gauss–Bonnet theorem shows that the total Gaussian bending
energy integrated over a closed surface, such as a vesiclewith no defects
or inclusions, is a constant [55]. Thus, the Gaussian term is often
neglected. However, vesicles undergoing shape transitions with co-
existing fluid phases [56] or vesicles with open patches that contain
embedded protein inclusions, as we consider here, require more care
[57,58]. For this reason, we retain the Gaussian term. Next, we consider
two extensions to the basic Helfrich model that we believe are impor-
tant when considering interactions with membrane proteins: compres-
sion of the membrane and orientation of the lipid.

3.1. Compression of the membrane

Going beyond the Helfrich Hamiltonian framework, which depends
solely on curvature variations, additional microscopic details can be
added, and a logicalfirst step is to include thefinite thickness of themem-
brane [48]. Assuming incompressibility of individual lipids, changes in
thickness can be related to the change in area (ΔA) per lipid molecule
[47,48] allowing for a description of the membrane in terms of curvature
each surface can be defined as a function of the two principal radii of curvature R1 and R2.
iltonian (Eq. (5)). The mean curvature is equal to half the sum of the principal curvatures
¼ 1

R1
� 1
R2
.

Image of Fig. 3
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and area changes. In contrast to idealized single sheet descriptions where
the midplane is used to describe the membrane, when a single surface
also accounts for thickness variations, the choice of surface representation
becomes important [48]. To better illustrate how this choice influences
the mathematics, consider the downward bending of a thin film:
stretching occurs at the upper surface and compression at the lower sur-
face. Thus, a representation of themembrane at the upper surfacewill re-
sult in a different description than a representation at the lower surface.
We are free to choose any surface, but it is often useful to construct the
so calledneutral plane [48]. Due to the geometry at amathematical surface
and how the geometry relates to the local curvature and thickness values,
the energy description may involve cross terms between these two
values, and the neutral plane is constructed to explicitly remove these
cross terms. Therefore, in the small deflection limit, the Helfrich Hamilto-
nian (Eq. (7)) is modified by the addition of a single quadratic energy
term related to area changes [59]:

Ecompression ¼ Ka

2
∫Γ A� A0

A0

	 
2

dΓ≈
Ka

2
∫
Ω

u2

h20

 !
dx dy; ð8Þ

where we have assumed V=Ah=A0h0, u=h-h0, and Ka is the bilayer
compression modulus [46,60].

3.2. Lipid tilt

The discussion up to this point has assumed that the lipids are

oriented along the bilayer normal vector (N
!
); however, this is generally

not the case. Experiments on DPPC bilayers in the gel-phase revealed
that lipids tilt at an angle of approximately π/6 with respect to the
surface normal [61]. At low temperatures, lipids exhibit internal struc-
tures with long range ordering, which are independent of local curvature
and can only be described through the inclusion of an additional degree of
freedom corresponding to the local orientation of the lipids [50,62,63]. A
tilt degree of freedom has also been used in the literature to discuss a
number of different phenomena including orientational lipid order in ves-
icles [63], inverted amphiphilic mesophases [64], and membrane fusion
events [65]. Even for membranes in the liquid state at room temperature,
order can be imposed on the tilt of the hydrocarbon chain due to geomet-
rical constraints and imposed boundary conditions at the contact sites
with rigid proteins [50,66], and it has been suggested that tilt should be
included in continuum models based on results from simulation [67,68].
Recently, the first experimental support for lipid tilt in the fluid lamellar
phase was provided based on X-ray scattering [69].

While originally introduced by Helfrich [35], a rigorous theoretical
framework for studying lipid tilt in liquid state membranes was put for-
ward by Hamm and Kozlov [50] in which they assumed that the core of
a monolayer could be treated with standard elastic continuum theory

(as in Refs. [47,70]). The key element is the definition of a variable t
!
,

which characterizes the difference between the direction of the mono-

layer surface normals N
!

and the average local head-to-tail vector of
the lipids n! (Fig. 2). For small deformations, we have [50,64]:

n!≈N
!þ t

!
; ∇

!� n!¼ ∇2hþ ∇
!� t

!
: ð9Þ

Incorporation of tilt into the Helfrich model requires some care. First,
the gradient of the tilt and surface bending curvature are additive, and
both terms are penalized by the same macroscopic elastic moduli,
which can be determined from experiment and/or simulation. Thus, in a

model with tilt, the curvature (∇2h) in Eq. (7) is replaced by ∇
!� n! yield-

ing an analogous term to the mean-curvature deformation cost often re-
ferred to in the lipid tilt literature as the lipid splay penalty [50,71]:

Etilt�splay ¼
Kc

2
∫
Ω

∇2hþ ∇ � t
!� �2

dx dy: ð10Þ
Second, there is an energy contribution due to the twist of the lipid
molecules [50]:

Etilt�twist ¼
Ktw

2
∫
Ω

∇
!� n!
� �2

dx dy≈
Ktw

2
∫
Ω

∇
!� t

!� �2
dx dy; ð11Þ

where × is the cross product ð∇!� n!¼ ϵijknjkÞ, Ktw is the lipid twist
modulus, and the last equality comes from applying the small deforma-
tion relation (Eq. (9)) together with the fact that the curl of the diver-

gence is zero (∇
!� ∇

!
h ¼ 0). The lipid twist energy arises from the

same physical origin as described above for Eq. (10)—spatial changes

in the direction of the vector n! [72]; however, ð∇ � n!Þ2 does not always
properly penalize all possible distortions, such as divergence free pat-
terns. This is most easily understood by considering a flat bilayer with
a divergence free director field n!, which adopts vortices as depicted
in Fig. 4A. The difference between twist penalty (Eq. (11)) and splay
penalty (Eq. (10)) becomes evident when comparing Fig. 4A with
Fig. 4B. In Fig. 4A there is no splay since the divergence of n! is zero,
but the curl term properly penalizes the directional spiraling change
of the lipid tails. On the other hand Fig. 4B shows pure splay of the lipids
away from the center, which is penalized by the divergence.

Third, the use of n! instead of N
!

to penalize changes in orientation
yields an analogous term to the Gaussian curvature penalty appearing
in Eq. (7) [45,73]:

Esaddle�splay ¼ ∫Ω KGKð Þ dx dy; ð12Þ

where K ¼ ∇
!� ½ð∇!n!Þ n!� ð∇!� n!Þ n!�: Although having the same

functional form as the Gaussian curvature term in Helfrich's theory,
the lipid tilt literature refers to the term above as the lipid saddle-
splay penalty [50,71].

Finally, when the tilt vector does not align with the monolayer sur-
face normal, the lipids become stretched, which is penalized by an inde-
pendent tilt elastic modulus Kt [50]:

Etilt�stretch ¼ Kt

2
∫
Ω

t
!� t

!� �
dx dy: ð13Þ

The physical origin of the tilt-stretching penalty can be understood
by considering a single hydrocarbon chain, which adopts a resting
cross sectional area A0. The lipid volume can be approximated
by the area times the equilibrium height h0: V=h0A0. Assuming

incompressibility, if external forces cause the lipid vector t
!

to deviate

from the surface normal N
!

with no change in the vertical height of
the monolayer, then the lipid chain must stretch [50] as shown in
Fig. 4C. The full lipid tilt energy is then:

Elipid ¼ Etilt�splay þ Esaddle�splay þ Etilt�twist þ Etilt�stretch; ð14Þ

where Etilt-twist is often assumed to be small, and Esaddle-splay is also often
ignored since it is a Gaussian term.

3.3. Other approaches to membrane energetics

We end this sectionwith a brief survey of additional techniques that
have been developed to studymembrane deformations. One of themost
influential models has come from a liquid crystal description of the
elastic energy of orientable molecules by Frank [72], and thismethodol-
ogy has been applied to the study of membranes and other soft mate-
rials [45,55,73]. Another approach popularized by May and Ben-Shaul
[49,71], has been to build up a lipid bilayer total free energy F by starting
from the average free energy per molecule f=F/N, where N is the total
number of lipid molecules. The basic premise is that f can be expressed
as the sum of three terms (f= fh+ fi+ fc): where fh is repulsive and
arises from electrostatic and/or steric interactions between polar



Fig. 4. Lipid tilt degrees of freedom.A.Apatch ofmembrane exhibiting pure twist. In all panels, the top image is a side viewof theupper leaflet, and thebottompanel is a top downviewof a
patch of lipids. Vectors demonstrate the head-to-tail orientation of individual lipids. B. A patch of membrane exhibiting pure splay. C. A patch of membrane exhibiting pure tilt. The lipid
density was intentionally decreased for clarity.
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heads [74]; fi is attractive and reflects the surface energy associatedwith
the hydrocarbon-water interface [74]; and fc is the chain conformational
energy accounting for lipid-lipid interactions. Yet another more recent
development is to use dimensional reduction to obtainmembrane ener-
getics [75]. Themembrane is treated as a fluid surface of finite thickness
with internal structure yielding an effective energy that depends on
area changes and misalignment between the surface normal and lipid
orientation. The equations naturally recover a large-scale Hamiltonian
that depends on curvature with the addition of new terms that account
for local-microscopic physics. Finally, while we have focused on single-
lipid or single-component membranes, there are a number of continu-
um studies addressing multicomponent, fluid membranes that have
varying lipid composition and inhomogeneous spontaneous curvature
[76–78].
3.4. High order bending terms

The Helfrich Hamiltonian in Eq. (5) is a phenomenological expan-
sion up to quadratic order in the curvature, and common concerns are
whether higher order terms are needed to faithfully describemembrane
mechanics and when does this description break down. There are bio-
logical situations in which it has been argued that higher order terms
are required. For instance, elasticity equations with higher order terms
produce stable tubular solutions [79], and they have been used to
study the periodic, egg carton shaped membranes observed in L-form
bacteria, which lack a cell wall [80]. Moreover, high order equations
have proven useful in the analysis of inverted cubic phases [81].
On the other hand, experiments of membrane tether formation suggest
that Eq. (5) is sufficient and that higher order terms are not needed to
accurately describe the high curvature regime [82–84]. Similarly,
coarse-grained simulations also support the validity of the Helfrich
framework for large deflections, with only minor errors [85–88]. In
support of these later two observations, it has been argued that the
higher order quartic curvature terms will only compete with the qua-
dratic term when the radius of curvature is of the order of a lipid tail,
which is half the bilayer thickness [46]. This theoretical argument is
consistent with a study from the Cui lab showing that deviations be-
tween coarse-grained and continuummodels of fusion pore formation
only become notable when the radius of curvature is close to themono-
layer thickness [88]. Another concern is whether a particular situation
may fail because geometries exceed the small angle deflection limit in
Eq. (7).

Next, wewill explore how themembrane deformations discussed in
this section relate to embedded or associated membrane proteins.
4. Coupling between the membrane and embedded proteins

Membrane proteins are surrounded by a shell of lipid molecules
often referred to as a lipid annulus. As the bilayer deforms, the lipids
in this annulus will impart forces to the protein potentially influencing
its conformation and function. Likewise, the chemistry and geometry
of the protein will act back on the membrane causing it to deform.
How does onemerge the continuumelastic treatment of themembrane
already discussed with the presence of a protein inclusion? Generally,
researchers have treated the proteins as hard constraints on the local
membrane geometry, and formally, the proteins enter as boundary con-
ditions imposed on the partial differential equations describing the sur-
face. These constraints are based on the assumption that proteins are
muchmore rigid than themembrane so that it is more energetically fa-
vorable for the membrane to adjust to the protein than vice versa. How-
ever, several research groups have considered the gating or transition of
proteins from one conformation to another and explored the role that
the membrane plays in biasing those discrete protein conformations
[89–92]. The protein is thought to influence the neighboring lipidmem-
brane through its geometry and its surface chemistry. First, membrane
proteins are characterized by a belt of hydrophobic amino acids that in-
sert into the hydrophobic core of themembrane (Fig. 5). If the lipids pull
away from this protein–membrane interface, then water becomes ex-
posed to the region at a very high energetic penalty due to the hydro-
phobic effect. Meanwhile, there are typically a ring of residues on the
membrane protein surface, such as tryptophans, at both the upper and
the lower head-group regions that favor the amphipathic interfacial re-
gion. This ring provides favorable electrostatic contacts with the polar
and charged moieties on the lipid molecules. These considerations im-
pose geometric constraints on the adjacentmembrane through amech-
anism termed hydrophobic mismatch [93]. The tight hydrophobic seal
between the protein and membrane then imposes geometric con-
straints on the membrane due to the specific chemistry and shape of
the protein. For instance, wedge shaped proteins, such as the KcsA
potassium channel (Fig. 5), can only smoothly mesh with lipids if
the membrane approaches the interface at a prescribed angle called
the contact angle. This later consideration can also impose tilt con-
straints on the adjacent lipids. As we will discuss, the contact angle
and hydrophobic mismatch enter the equations through the boundary
conditions, and they couple to the curvature, compression, and lipid
tilt ultimately influencing the membrane deformation energy. Because
these protein-inducedmembrane deformations can extend for long dis-
tances [40], a significant amount of research has been dedicated to the
role of membrane mediated interactions between embedded proteins,
which we will review. In what follows, we constrain our survey to

Image of Fig. 4


Fig. 5. Cartoon models of membrane protein interactions. A. The potassium channel KcsA
adopts a conical shape in the closed state (left). The hydrophilic residues are blue and the
hydrophobic residues are white, and the hydrophobic residues localize to a belt around
the protein that creates the energetic ‘seal’ with the membrane. This seal would impose
a negative contact angle on the membrane (black lines) potentially causing bending in
the simplified geometry on the right. B. The mechanosensitive channel MscL is
cylindrical with a more well defined hydrophobic belt (left). This shape would not
impose a contact angle on the protein, but if the hydrophobic height of the protein
differed from the equilibrium width of the membrane it may impose a hydrophobic
mismatch that causes compression or expansion of the adjacent membrane (right).

2 In subsection 4.2 wewill discussmodels that specifically focus on curvaturemediated
large-scale deformations.
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approaches that retain a geometrical description of the protein shape,
but we acknowledge that a number of studies treat the proteins as a
mean density field that couples to themembrane curvature [76,94–97].

4.1. Coupling through hydrophobic mismatch

One of the most important sources of coupling between the protein
and the membrane comes from hydrophobic mismatch [93]. This phe-
nomenon arises when the length of the protein's hydrophobic trans-
membrane domain (dp) is different from the hydrophobic thickness of
the bilayer (d0). Whenever dp≠d0 the protein and bilayer will adapt to
each other either by local changes in lipid bilayer thickness and/or
changes in the orientation or tilt of the protein in the membrane [93].
If the mismatch is positive (d0bdp), there is an energetic penalty for ex-
posing hydrophobic residues to water, which will cause the membrane
thickness to increase through stretching. On the other hand if the mis-
match is negative (d0Ndp), then the bilayer will compress (pinch
down) to prevent exposure of hydrophilic residues to the hydrophobic
core. Early experiments investigated the aggregation propensity of bac-
teriorhodopsin in phophatidylcholine (PC) bilayers of varying thickness,
which induced different degrees of hydrophobicmismatch [98]. The au-
thors determined that the protein remains mono-dispersed in bilayers
with thickness values close to the protein's value, but that aggregation
occurs at extreme positive and negative mismatch values.

The antibiotic ion channel forming peptide, gramicidinA (gA), has also
been a model system used to study the role of hydrophobic mismatch in
controlling protein function [99]. Gramicidin is a short peptide that forms
functional ion channels when two monomers (one from each leaflet)
come together to create a dimer. Each monomer alone cannot span the
width of themembrane, and hence, dimer formation and channel activity
are tightly coupled to the hydrophobic thickness of the host membrane
through ahydrophobicmismatchmechanism. The changes in the average
channel lifetimes are related to the bilayer energetics [99,100] giving rise
to a direct experimental readout of the underlying microscopic interac-
tions between the membrane and the protein. Moreover, Harroun et al.
[101] used small angle X-ray scattering to provide experimental evidence
for the theorized membrane thinning adjacent to channels.

4.1.1. Proteins influence bilayer thickness
The first two theoretical models that addressed hydrophobic

mismatch were carried out using simplified protein geometries and
accounted for only two modes of deformation: interfacial tension
(change in total surface area) and change in bilayer thickness [102,
103]. Marcelja's model employed microscopic statistical mechanics in
which the protein was treated as a simple hexagonal shape that occu-
pied a certain number of lipid chain sites [102]. Meanwhile, Owicki
and McConnell used a phenomenological, Landau-type model, where
the protein was assumed to be radially symmetric [103]. Both models
assume that the membrane adopts a fixed width at the protein surface
due to the hydrophobic mismatch constraint. The models predicted
that the bilayer thickness relaxes exponentially from the value imposed
at the site of contact with the protein to the bulk value. Additionally,
both models predicted that the membrane-induced deformations cre-
ate a short range, attractive force between proteins that decays mono-
tonically with distance. A few years later, Mouritsen and Bloom took a
slightly different approach and introduced the well known mattress
model, where both the protein and themembrane (mattress) are repre-
sented as one-dimensional springs [37].

4.1.2. Proteins influence membrane curvature
Following initial work that focused on thickness changes [37,102,

103], Huang then adapted the free energy description used in smectic
liquid crystal theory and introduced membrane curvature as a third
mode of deformation, while retaining both compression and tension
[38]. For analytic tractability, Huang also assumed a simple cylindrical
protein and imposed constraints on the membrane thickness where it
contacted the protein. This study was among the first to show that cur-
vature in fact dominated the bilayer deformation energy, not compres-
sion, and that the energy density was confined to the vicinity near the
protein [38]. Thus, retaining thickness distortions and introducing cur-
vature in the elastic membrane model yields a theoretical framework
that describes both long range (curvature mediated) and short range
(compression) deformations2. The resulting model is quite similar to
the Helfrichmodel in Eq. (7), but rather than expressing themembrane
shape as a single sheet representing the bilayer, the compression is in-
corporated by describing the upper and lower leaflets by two indepen-
dent surfaces with similar forms:
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where all symbols retain their meaning as in Eq. (5), we have used the
u± definitions in Eq. (2), and factors of 2 are present due to amonolayer
versus bilayer description.
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The equilibrium shape of the membrane is then determined by tak-
ing the functional derivative of Eq. (15) to arrive at:

∇4uþ � ∇2 Jþ0 � γ∇2uþ þ β uþ � u�ð Þ ¼ 0; in Ω ð16Þ

∇4u� þ ∇2 J�0 � γ∇2u� þ β u� � uþð Þ ¼ 0; in Ω ð17Þ

γ ¼ α
Kc

;β ¼ 2Ka

L20Kc
;β� ¼ 2K�

a

L20Kc
;u� ¼ h�∓

L0
2

	 

; L0 ¼ 2h0: ð18Þ

The equations presented above are quite similar to the ones obtain-
ed by minimizing the linearized version of the Helfrich–Canham
Hamiltonian (Eq. (7)), except the lateral compression of themembrane
becomes an important degree of freedom necessitating the need for an-
other independent variable. Additionally, membrane proteins exert
their influence on the membrane surface through the boundary condi-
tions, which can sometimes make the equations incredibly hard to
solve, but does not change their form.

The method discussed here for incorporating the influence of
membrane proteins into continuum models of the membrane is not
unique. Rather than incorporating membrane compression through
the use of relative height differences between two monolayers, others
have followed the work of Safran and described the membrane
thickness changes by a dilatation variable as well as surface curvature
[59]. Nonetheless, the influence of proteins on the membrane
energetics and shape is also incorporated through boundary conditions
motivated by ideas of hydrophobic mismatch and shape constraints
[51,58,59,104,105].

4.1.3. Proteins influence lipid tilt
As discussed in Section 3, the membrane exhibits internal lipid ori-

entation degrees of freedom that are independent of the curvatures
and compression, and many studies have described how to couple
membrane proteins to the lipid tilt [71,106–111]. Fournier proposed
one of the earliest phenomenological models based on symmetry
expansions of a Helfrich-type Hamiltonian in two structural variables
for each monolayer: one for lipid orientation and one for shape [106].
The protein inclusion was treated as an idealized, radially symmetric,
piecewise conical shape with two distinct angles pertaining to each
monolayer. The conical shape asymmetry could consequently lead to in-
dependent deformations of the upper and lower leaflets by imposing
two different contact angles [106]. This modelwas found to always pro-
duce repulsive forces between inclusions, but the lipid tilt relaxesmem-
brane curvature more quickly at short distances reducing interprotein
repulsion [106].

The hydrocarbon chainsmaking up the core of the bilayer can rapid-
ly change their conformations often resulting in tilt, which elastically
stretches the molecules [50,106]. The large number of conformational
states also indicates that lipids have a considerable amount of entropy.
Near the membrane–protein interface, tail movement is restricted re-
ducing the number of available conformations that can be adopted
[107,108]. Thus, the entropic free energy (Eentropic) of the lipids can be
written as an explicit function of the distance from the protein. May
constructed a simple 1D model for the entropic energy that depended
on the lipid orientation n! [107]. It was assumed that at each point in
the membrane a spontaneous director field ( n!0) existed that defined
the maximum entropy orientation of the lipids, and a model for n!0

was developed based on the assumption that the inclusion is an infinite-
ly hard wall. The value of n!0 reflects the preferred lipid orientation in
the presence of an inclusion ignoring other elastic terms; and therefore,
the value of n! that maximizes the entropy need not be the value that
minimizes the total bending and tilt energies. In the absence of a rigid
inclusion, n!0 ¼ 0 vanishes, the average lipid orientation will align per-
pendicular to the surface normal, and there is no loss of conformational
entropy. In the small deviation limit, expanding the entropic energy to
quadratic order [108] results in:

Eentropic ¼
1
2
∫
Ω

Ke x; yð Þ n!� n!0

� �2
dx dy; ð19Þ

where symmetric deformations about the horizontal mid-plane are as-
sumed and Ke(x,y) is the space dependent tilt-entropic modulus. Note
that the tilt modulus Kt in Eq. (13) has a different physical origin from
Ke, and hence they are not the same. Both Ke and n!0 have been estimat-
ed with molecular-level mean field theories [107,108,112] and simpler
continuum chain models [107,108], where both methods produce sim-
ilar results. Unlike other membrane parameters, they have spatial de-
pendence since they vary with the distance from the inclusion having
larger values at the protein interface.

4.1.4. Additional energetic terms
Several studies have included additional refinements to the protein-

coupled membrane models presented already such as the relaxation of
the constant lipid volume constraint [58], higher order coupling terms
between changes in area per lipid molecule and curvature [51], and ad-
ditional degrees of freedom that account for lipid protrusion in the short
wavelength regime [105,113]. Meanwhile, models for certain proteins
such as mechanosensitive ion channels have added membrane tension
as an external parameter that contributes to the total deformation free
energy [89,91,114–117], rather than the intrinsic surface tension term
in Eqs. (7) and (15).

4.2. Protein shape impacts membrane deformations

The interaction between the lipids and the protein surface imposes
height and angle constraints on the membrane, but the shape of the
membrane protein itself and the placement and chemistry of residues at
the interface are also crucial. For instance, a cylindrical protein with a
well defined hydrophobic belt of uniform height will produce a different
pattern of distortion than an elliptical protein whose hydrophobic belt
changes height along the outer edge. Most theoretical studies have con-
sidered proteins as highly idealized shapes such as point particles, two di-
mensional flat disks and ellipses, or conical shapes—all lacking chemical
detail [40,41,118]. As alreadydiscussed, the height of the hydrophobic do-
main of the protein, or conversely the membrane width, influence the
compression and curvature energies of proteins that exhibit hydrophobic
mismatch, butmost studies assume simple cylindrically symmetric inclu-
sions [38,39,93,119,120]. Similarly, Goulian and co-workers considered
circular, conically shaped inclusions that imposed a fixed contact angle
on the membrane all along the membrane-protein contact curve [40].
Minimizing the membrane elastic energy using a field-theoretic ap-
proach, the authors showed that proteins experience a membrane-
mediated repulsion, and follow up corrections to these initial calculations
also revealed purely repulsive interactions [121]. Addingmembrane fluc-
tuations to this framework, however, produces attractions between pro-
teins [40]. Interestingly, several years later, experiments with symmetric
colloidal particles embedded in giant unilamellar vesicles produced col-
loid clustering, revealing that the source of the attractionwas likely curva-
ture mediated not fluctuations [122].

In an attempt to determine if themembrane could provide attractive
forces between inclusions, Fournier and colleagues considered the in-
teraction of point-like inclusions that imposed anisotropic curvatures
on the membrane [123,124]. With this change in protein geometry,
the inclusions now exhibit long-range attractive interactions strong
enough to induce aggregation; however, the results still failed to explain
why symmetric particles aggregated [125]. Around the same time, Oster
and co-workers employed a mechanical approach involving the solu-
tion of a PDE originating from the Helfrich Hamiltonian for the mem-
brane with fixed height and contact angles corresponding to rigid, flat,
circular, inclusions [41]. They showed that the solution is not additive,
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but rather the inclusions interact via anN-body potential that can exhibit
stable clusters of particles. They emphasized that high order aggregates
may exist even if the pair-wise forces are repulsive, and later work by
Deserno highlighted this finding that the boundary conditions give rise
to non-additive solutions even though the underlying equations are lin-
ear [122,126]. In a follow up study, Oster's lab extended the analysis to
consider elliptical discs, and they concluded that the change in the
shape of the inclusion greatly affects the character of the multi-body in-
teractions [42]. An even more sophisticated treatment of the membrane
shape employed a Fourier representation of themembrane-protein con-
tact boundary to explore the membrane deformation energies of MscL
mechanosensitive channels [116,117]. Nonetheless, the vast majority of
continuummembranemodels have treatedmembrane proteins as high-
ly idealized shapes that lack the complex geometric and chemical detail
that real membrane proteins have, yet several studies have shown that
shape is important [42,116,117,123,124].

In Section 5, we will outline recent advances that have made strides
in treating the complex nature of real membrane proteins.

5. Towards a more realistic geometric and chemical representation
of the protein

In the last section, we suggested that a more detailed description of
the protein is required to better understand how proteins interact with
the membrane, how the membrane acts back on proteins, and how the
membrane mediates protein–protein interactions. An outstanding
question is then, “Can continuum elastic models really capture the sa-
lient features of membrane-protein interactions?” One of the best
ways to quantitatively address this question is by comparing the mem-
brane distortions generated by embedded proteins produced by fully-
atomistic MD simulations with those from continuum theory. Lee and
colleagues recently did this, and they showed that the lipid behavior
in the annulus surrounding a gramicidin channel was quite complex,
with specific tryptophan residues playing a key role in sculpting the
membrane [119,127]. When they compared their MD results with con-
tinuum calculations using a smectic-liquid crystal description of the
membrane, they realized that the model failed to produce the same de-
formations [119,127]. Arewe then stuckwith atomisticMD simulations,
or are there additional advances that can be made with continuum
models?While fully atomisticMD simulations are powerful and provide
a high level of chemical and spatial resolution, in certain cases, they are
not able to match the timescale of biological phenomena, especially
membrane relaxation, which can be very slow [26]. We believe that a
new wave of hybrid continuum-atomistic models will be helpful in
bridging the speed of continuummethodswith the accuracy ofMD sim-
ulations. To do this, the specific chemistry of the protein must be taken
into account, as pointed out by Lee and colleagues [127], and we must
move beyond idealized geometries.

In recent years, several research groups have worked on coupling
continuum elastic models of the membrane with richer chemical and
geometric descriptions of the protein to better understand membrane
protein insertion and stability [33,90,128–132]. In many of these stud-
ies, the starting point for the protein is an atomic structure, often deter-
mined by X-ray crystallography or NMR, following the seminal work by
the Honig lab in which they considered the interaction of a helix with a
flat, rigid membrane [43]. This approach of bringing atomistic detail to
the continuummembranemodelsmakes it possible to carry out contin-
uumelectrostatics calculations, non-polar solvation energy calculations,
and other protein mechanics considerations that are quite standard in
molecular biophysics. A first order approximation to the total system
energy is then:

GT ¼ G eð Þ þ G npð Þ þ G með Þ; ð20Þ

where G(e) is the electrostatic energy, G(np) is the non-polar energy, is
G(me) is the membrane bending energy. Thus, Eq. (20) might serve as a
good alternative to fully atomistic approaches, while retaining the
speed, and other positive attributes, of continuum membrane models.
Moving beyond a flat, passive description of the bilayer, our group
allowed themembrane to move in response to the presence of the pro-
tein [128] by adopting the continuum membrane deformation model
put forth by Huang [38]. The presence of the membrane creates a com-
plex dielectric environment around the protein that significantly im-
pacts the electrostatic (G(e)) and non-polar energies (G(np)) of the
system. We first solve for a given membrane deformation and then
feed the shape of the solution into a continuum Poisson–Boltzmann
electrostatic solver [133] by ‘painting’ the new dielectric environment
around the protein [128]. Electrostatic considerations are crucial due
to the low-dielectric environment of the membrane core, which poses
a barrier to charged moieties on the protein, and computationally the
protein,membrane, and aqueous solution are all given distinct dielectric
values and solved easily with the numeric software APBS or APBSmem
[134–136]. One of the most important driving forces for protein associ-
ation with the membrane is the hydrophobic effect or non-polar solva-
tion energy. Upon entering the greasy, water free region of the
membrane, water is liberated from the surface of the protein, which
gives rise to an increase in the entropy of the water. This consideration,
which is also an important determinant of protein folding, can be esti-
mated from the shape of the protein and how the membrane forms
around it. The simplest hydrophobic model assumes that the energy
change is proportional to the surface area of the protein buried in the
membrane with parameter values obtained from the Sitkoff and col-
leagues based on small molecule partitioning [137].

The membrane distortions around proteins are then determined by
identifying the membrane boundaries that minimize the total energy
in Eq. (20).We identify the contact curvewhere themembrane touches
the protein and thenmove the curve by hand [128] or through a search
algorithm [33,129] and calculate GT for each configuration (Fig. 6) We
also use a Fourier expansion to describe the contact curve [33,128,
129], similar to Haselwandter and Phillips [116,117]. We can identify
stable equilibria that show a mechanical balance between bending en-
ergies, electrostatic solvation of buried polar groups, and exposure of
transmembrane domains to water [128]. With this approach, our lab
has been able to quantitatively reproduce results from fully-atomistic
MD simulations regarding the insertion energy of a helix harboring
a charged residue [128], and we have qualitatively matched the
energetics and deformations produced by the insertion of K+ channel
voltage sensor segments (S4 segments) from coarse-grained and fully-
atomistic simulations [129,138]. Moreover, this hybrid atomistic-
continuum approach also explains why charged residue insertion into
membranes is non-additive—charged residues bend the membrane as
they insert, and once thefirst residue has paid the elastic cost of bending
the membrane, the second residue is water exposed at very little addi-
tional cost [129]. In Latorraca et al. [33] the work was extended to
explore the energetics of ion and small peptide penetration into mem-
branes, where thickness and membrane mechanical properties played
a crucial role. Most importantly, the hybrid model probes questions re-
lated tomembrane distortion at a tiny fraction of the computational cost
required by fully atomistic approaches. Lastly, we believe that our ap-
proach can overcome the failure of simpler continuum models
employed by Lee and colleagues [127] through the incorporation of pro-
tein side chain chemistry and relaxing the assumption that the protein
is cylindrically symmetric.

The Feig group has extended this mechanical deformation model to
include amore dynamic view of small molecules, peptides, and proteins
[130]. They coupled the membrane elastic energy with a dynamic het-
erogeneous generalized Born (DHDBG) formalism for fast dynamics
simulations in the presence of an implicit membrane. The authors
found that when using the dynamic version that allows for membrane
bending, instead of a static implicit model of the membrane, the inser-
tion of charged and polar molecules (amino acid side chain analogs,
the WALP23 peptide, gramicidin channels and arginine-containing



Fig. 6. The geometry of themembrane near an atomistic protein.A. Side view of amembrane protein illustrating themembrane distortions around the protein by h+ (upper gray surface)
and h- (lower gray surface). B. Close up view of the contact curve, showing the displacement (u+) and slope (S+) boundary conditions at one point of the upper leaflet contact curve.
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helices) is much more in-line with results from fully-atomistic simula-
tions [130]. Another important advance has been to more realistically
treat the membrane-protein boundary. The Weinstein group runs fully
atomistic simulations of a membrane protein of interest and then
extract the membrane height directly from the simulations for use in
continuum elastic energy calculations [132,139]. They developed a
Cartesian grid-based finite difference method to solve the underlying
elasticity equations allowing them to calculate the energetic cost of
the membrane deformations arising from hydrophobic mismatch and
curvature. The contact angle boundary conditions were not obtained
from the simulations, but rather by an iterativeminimization procedure
performed over the membrane curvature (H) at the boundary.
This multiscale modeling approach proved to be a useful tool in quanti-
fying the hydrophobic mismatch-driven remodeling of membranes by
G-Protein Coupled Receptors (GPCRs) [132] and was later used to un-
derstand how the coupling to the membrane influences the conforma-
tional state of the bacterial leucine transporter (LeuT) [139].

Other researchers have employed sophisticated numerics, such as
finite-elementmethods andmean-field approaches, to treatmembrane
mechanics, while also retaining some level of chemical detail in the pro-
tein [90,131,140,141]. Powerful numeric schemes, such as these, have
the potential to accurately handle large membrane deformations
where the small angle limit breaks down [142] and/or non-linear elas-
ticity may play a role. For instance, Zhou and co-workers developed a
finite-element model of a membrane with non-linear elasticity in
close apposition to a curvature inducing BAR domain [131]. The protein
was treated atomistically, and its electrostatic influence on the nearby
membrane caused it to curve. Similarly, Khelashvili et al. [141] studied
BAR-domain induced remodeling of a heterogeneous membrane mak-
ing use of a self-consistent mean-field model that combined a BAR do-
main in atomistic detail with a free energy density functional based on
the continuumHelfrichmodel and on Poisson–Boltzmann (PB) electro-
statics. Another related area for improvement is the description of lipid
order around the protein and how this can give rise to spatially depen-
dent moduli [143].

Finally, while we have focused in this section on hybrid approaches
that predict deformation profiles around a protein by solving a PDE.
However, some authors have used MD simulations to determine the
membrane shape, similar to the Weinstein group, but then analyze
the energies, forces, and torques with a continuummodel without for-
mulating and solving a PDE [92,144–146].

In Section 6, wewill briefly outline the energetic terms of our hybrid
continuum-atomistic model, discuss our recent advances in treating
complex membrane shapes, and then show how our method compares
to fully atomistic MD simulations for complex membrane proteins in
Section 7.

6. A detailed look at our hybrid continuum-atomistic model

Here we describe the energetic terms in Eq. (20) and the ma-
chinery needed for identifying the membrane-protein contact
curve, and optimizing the curve to determine deformations that
minimize the total energy. As discussed in the last section, many
other researchers are approaching this problem from a number of
different interesting and unique perspectives—ours is just one of
these approaches.

6.1. Electrostatic energy

We calculate the electrostatic component of the energetic cost
for the protein to be in the membrane using Poisson–Boltzmann (PB)
theory:

�∇ � ϵ r!
� �

∇ϕ r!
� �h i

þ κ2 r!
� �

sinh ϕ r!
� �h i

¼ e
kBT

4πρ r!
� �

; ð21Þ

where ϕð r!Þ ¼ Φð r!Þ
kBT

is the reduced electrostatic potential at position r!,
kB is the Boltzmann constant, T is the absolute temperature, κ is the
Debye–Hückel screening coefficient, ϵ is the spatially-dependent dielec-
tric constant, ρ is the space-dependent charge density, and e is the fun-
damental charge unit. The influence of the membrane enters through
the spatial dependence of ϵ, κ, and ρ in caseswherewe explicitly include
charged groups to represent anionic lipids at discrete locations in the
head group interface [147]. The solution to the continuum membrane
equations (Eqs. (16) and (17)) determine the boundaries delineating
these spatial regions, and the APBS software provides a flexible platform
for modifying these three parameters [34] and solving the PB equation
[134]. Once ϕð r!Þ is calculated, G(e) is readily computed:

G eð Þ ¼ 1
2
∫
allspace

Φ r!
� �

ρ r!
� �

dΩ; ð22Þ

where G(e) is the linearized form, but in practice we report values com-
putedwith the full non-linear energy. The electrostatic energy is formal-
ly divergent when calculated as in Eq. (22), and we always determine
values with respect to the protein in solution far from the membrane
[128], which removes the singularities.

6.2. Non-polar energy

The non-polar energy arises, in part, from the solvent reorganiza-
tion that happens when large molecules are sequestered away from
water. This phenomenon is responsible for the clustering of hydro-
phobic proteins and peptides and the stabilization of molecules in
the membrane. A fast and simple theory for estimating the strength
of this interaction within the continuum framework is to assume
that the stabilization energy of the molecule in the hydrophobic en-
vironment is proportional to the solvent accessible surface area
(SASA) [137,148]. The physical motivation is that the number of
conformationally restricted water molecules that are released upon
removal from solution is related to the amount of surface area; how-
ever, more sophisticated theories have been applied to this problem

Image of Fig. 6
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[149–151]. We model the non-polar energy contribution to the pro-
tein in the membrane as [128]:

G npð Þ ¼ a � Amem � Asolð Þ þ b; ð23Þ

where Amem is protein's SASA in the membrane and Asol is value in so-
lution. The phenomenological constant a (a=0.028 kcal/mol Å 2) is
taken from earlier work exploring the transfer of small solutes be-
tween polar and non-polar solvents [137]; however, we set b to
zero given that the meaning of this offset is difficult to interpret for
partial insertion into a hydrophobic environment and its magnitude
is small compared to all other energetic terms in Eq. (20). Finally, we
use the MSMS program to quickly compute the protein surface area
[152]. As described elsewhere [33], we use the solution for the
upper and lower membrane leaflet surfaces to determine which por-
tions of the protein are solvent accessible when computing Amem.

6.3. Membrane elastic energy

Any of the membrane models proposed in the literature and
discussed in Section 4 could be used to compute the membrane energy
G(me), but themodels that aremost compatible with our energetic treat-
ment of the protein are ones that explicitly account for the membrane
width. Thus, our work has utilized a dual monolayer leaflet description
[33,128,129] as proposed by Huang [38], which treats the upper and
lower leaflets independently and depends on changes in curvature
(mean and Gaussian), thickness and tension. We assume that the total
bilayer elastic energy is given by the sum of the contributions from
each monolayer, we employ a Monge gauge representation, and we ig-
nore spontaneous curvature. Near the protein, where there is not al-
ways a one-to-one correspondence between a patch in the upper
leaflet with a patch in the lower leaflet, it becomes difficult to define
the compression, and we have recently developed a method for han-
dling these complex boundaries (currently in preparation [153]). In
the past, we used a finite difference approach to solve the underlying
PDEs in Cartesian or radial coordinates, but more recently we have de-
veloped a finite volume approach [154] that is more appropriate for
solving biharmonic equations on complex boundaries by using a level
set function to describe the membrane-protein boundary curves [153].
In Section 7, we will employ this membrane model as shown in
Eq. (15)with the standardparameters given in Table 1; however, our al-
gorithm isflexible and any single energy term, includingG(me), can read-
ily be exchanged with a different theory.

6.4. Identifying and optimizing the contact curve

Within the dual monolayer framework, there are two contact
curves—one for the upper leaflet and one for the lower leaflet (Fig. 6).
These curves represent the lipid excluded surface, which is the surface
of closest contact between a spherical lipid probe and the protein
atoms [155]. We first erect a flat, Cartesian grid for the upper and
Table 1
Parameter values used in continuum model calculations in Fig. 7. All membrane values
correspond to POPC bilayers. Additional parameters used in the electrostatic calculations
are identical to values reported in Ref. [33].

Parameter Value Reference

Membrane thickness (L0) 28.5 Å [157]
Surface tension (α) 3.00 × 10-13 N/Å [33]
Bending modulus (Kc) 8.5×10-10 NÅ [158]
Gaussian modulus (KG) ~-0.9×Kc [159,160]
Compression modulus (Ka) 2.13×10-11 N/Å [156,161]
Protein dielectric (εp) 2.0 [148]
Membrane core dielectric (εhc) 2.0 [162]
Head group dielectric (εhg) 80.0 [162]
Water dielectric (εw) 80.0 [148]
SASA prefactor for non-polar energy (a) 0.028 kcal/mol Å 2 [137]
lower leaflets, and then use level set theory to move grid points near
the membrane-protein surface onto the boundary curve representing
the lipid excluded surface [154]. Next, we represent the initial displace-
ment of themembrane on the protein (the hydrophobicmismatch) by a
Fourier expansion with an arbitrary number of terms. Such a represen-
tation gives rise to smooth boundary curves,which are generally seen in
simulation, that are not characterized by prohibitively large curvature
energies. Once the boundary is set up with particular values of the Fou-
rier coefficients, we solve for the total membrane shape to determine
G(me), then the monolayer surfaces from the solution are used to deter-
mine G(e) and G(np), as described above. Finally, we optimize using
simulated annealing followed by Powell's method to determine the
membrane-protein contact curves and the total energy of the system
as in Eq. (20). Convergence of the search is highly dependent on the
protein, but generally it requires 500 to 1500 iterations and about 2 to
7 h on a desktop computer. For a more detailed description of the ener-
getic model or its solution, we refer the reader to our previous studies
[33,128,129,147].

7. Continuummembrane models can match atomistic simulation

While membrane elastic models are incredibly fast, compared to
coarse-grained and fully-atomistic simulations, and make it possible to
quantify membrane bending energies, there is an open question as to
whether they can accurately reproduce the true membrane deforma-
tions induced by membrane proteins. Unfortunately, experimental
methods cannot be used to benchmark the quality of continuummodels
since they lack the spatial resolution required to determine how lipids
are configured around proteins, thus, atomistic simulations remain
the best means of comparison. Only a few studies have directly com-
pared continuum results with coarse-grained [33] and fully-atomistic
[127,145,146] simulations, and the main conclusion from Lee and co-
workers is that continuum models have major deficiencies [127]. Here
we highlight some of the recent developments in our continuum
model discussed in Section 6 by showing that we can quantitatively
match deformation profiles observed in MD simulations for the lipid
scramblase nhTMEM16. The MD simulations and our model predict ex-
tensive membrane remodeling.

7.1. The nhTMEM16 lipid scramblase produces large deformations

The compositional asymmetry of lipids between the leaflets at the
plasma membrane influences signaling properties of cells. Scramblases
are a class of proteins that disrupt membrane asymmetry by facilitating
the transfer of phospholipids from one leaflet to the other in an energy
independent manner. These transmembrane proteins play a role in
events such as coagulation of the blood and cellular apoptosis by
transporting phosphotidylserine (PS) from the inner leaflet to the
outer leaflet of theplasmamembrane [163]. In particular, TMEM16 fam-
ily members have gained recent attention for their role in phospholipid
scrambling in platelets and fungi [164,165]. Additional insight has come
from the high-resolution structure of a family member from Nectria
hematococcus (nh) (nhTMEM16), which has revealed a possible mech-
anism for phospholipid conduction across themembrane. Themolecule
forms a dimer, and each subunit has a hydrophilic cavity that faces the
core of the membrane. It is believed that head groups are conducted
from one leaflet to the other through this groove, and this hypothesis
is supported by chimera studies carried out on family members that
have lost the ability to flip lipids [166].

No lipidswere resolved in the3.3 Å resolution structure,which is not
surprising, so a molecular level view of how nhTMEM16 interacts with
the membrane was not clear. Using their software, MemProtMD, the
Sansom group embedded the protein in a DPPC lipid membrane and
ran a microsecond coarse-grained simulation of nhTMEM16, and in
this short time frame they observed deviations from a planar bilayer
and 15 lipids traversed the lipid-facing cavity [167]. We turned to all-
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atom simulations to determine if the distortions around nhTMEM16
compared favorably with results from our continuummethod.We cen-
tered the dimer in the membrane with far-field boundaries taken from
OPM [168], and then used our algorithm to identify the membrane-
protein boundary followed by optimization to minimize the total ener-
gy (Eq. (20)). Our model shows that nhTMEM16 drives significant
membrane bending in what appears to be a pinching mode from the
Fig. 7.Membrane bending around nhTMEM16 determined from fully-atomistic MD and contin
elasticity. The protein is represented at the atomistic level, with the upper and lower head gro
hydrophobic amino acids are white and polar residues are blue. B. Enlarged view from pan
averaged from fully-atomistic MD simulations. E,F. Upper and lower membrane surfaces det
undeformed height of the membrane far from the protein, blue are downward deflections, an
throughout. The stars in panel D indicate points of discrepancy between simulations (panel D
upper and lower leaflets along the x equal y axis in panels E and F. The starting point and dire
upper and lower leaflets (green surfaces in Fig. 7A) indicative of hydro-
phobic mismatch. The induced curvature is largest at the hydrophilic
groove, but it is also present at the periphery of the groove (Fig. 7B). Sur-
face views of the upper (panel C) and lower (panel D) leaflets reveal a
pseudo-two fold pattern consistent with nhTMEM16 being a dimer,
and they also reveal that the leaflets bend down by as much as 10 Å
from the upper leaflet and up bynearly asmuch from the bottom leaflet.
uum elasticity. A.Membrane distortions caused by nhTMEM16 predicted from continuum
up-water interfaces in green and the surfaces delineating the hydrocarbon core gray. All
el A with the hydrophilic groove indicated. C,D. Upper and lower membrane surfaces
ermined from continuum elasticity. The protein is gray. White values correspond to the
d red are upward deflections. All color bars are in ångströms. Color scheme is the same
) and continuum solution (panel F). G,H. Curvatures (G) and membrane heights (H) for
ction is specified by the dashed arrows in panels E and F.

Image of Fig. 7
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Additionally, there is little compression as suggested from the compar-
ison of the upper leaflet displacement (panels C and E) with the lower
leaflet displacement (panels D and F), but rather the upper and lower
leaflets move in concert (panel H).

Next, we ran fourMD simulations for 50 ns (full simulation details in
Table 2) for an aggregate simulation time of 200 ns and plotted the av-
erage height of the upper and lower leaflets (Fig. 7E,F). The pattern of
the deformations predicted from the all-atom simulations is strikingly
similar to the results from our continuum calculations. The two fold
symmetry is again present, and the pattern of downward deflection
(blue) and upward deflection (red) at the upper leaflet is nearly identi-
cal (panels C and E). Moreover, our continuum model is also in quanti-
tative agreement with MD in predicting the absolute magnitude of the
deflections from −10 to +5 Å. The agreement at the lower leaflet is
also quite good both qualitatively and quantitatively (panels D and F),
with the biggest discrepancy (of about 5 Å) occurring at the inlets indi-
cated by stars panel (Fig. 7D). We believe that our results provide in-
sight into the function of nhTMEM16, and that the pattern of
membrane distortion across the hydrophilic groove is likely essential
for its ability to move lipids from one leaflet to the other efficiently,
and this hypothesis can be tested through the design of future experi-
ments. Lastly, the continuum calculations are very fast. The molecular
dynamics simulations took 32 GPU days to produce the full 200 ns tra-
jectory, while the continuum calculation took 8 h to complete on a sin-
gle CPU (100 times faster without considering the cost differences
between GPUs and CPUs). We note that in our continuum methods
rather than using the averaged structure from our MD, we have per-
formed the calculations using the crystal structure of nhTMEM16
[169]. Often the protein conformation will change during the simula-
tion, which can confound comparisons between simulation and contin-
uum calculations on static snapshots. To quantify the structural
differences and degree of nhTMEM16 drift we calculated the root
mean squared deviation (RMSD) of the entire protein (4.3 Å) and the
transmembrane domain (1.1 Å) alone. Since the latter region is respon-
sible for inducingmembrane deformations, and has a small RMSD value,
we believe that our continuum results on a single structure are relevant
as evidenced by our close match to MD (Fig. 7). In cases where the pro-
tein drifts significantly, it may be more appropriate to use the averaged
structure obtained from molecular simulations or carry out many con-
tinuum calculations on many different configurations.

8. Conclusions

In this review, we have briefly outlined the evolution of continuum
elastic models of the membrane and how these models have been
Table 2
Parameter values used in atomistic molecular dynamics simulations
of nhTMEM16.

Parameter nhTMEM16

MD engine Amber
PDB ID 4WIS
Lipid type POPC
Forcefield CHARMM36
Ensemble NPT
Barostat Berendsen
Pressure coupling 0.5 ps
Pressure tensor Semi-isotropic
Thermostat Langevin
Temperature 303.15 K
Friction coefficient 1 ps-1

Time step 2 fs
Shake yes
Electrostatics PME
Non-bonded cutoff 8 Å
Switching distance N/A
Atom count 335,204
Aggregate time 200 ns
coupled to the presence of embedded integral membrane proteins.
The original studies by Helfrich and Canham were concerned with the
curvature energies of a membrane represented as a two dimensional
sheet [35,36]. Early attempts to include membrane proteins in this
framework treated the proteins as simple geometric objects such as
point particles, hard discs, or ellipses. Additional degrees of freedom
such as bilayer thickness [38,48,106] and the tilt of the lipid molecules
[50,106,108] have become essential considerations for adequately
studying different aspects of protein–membrane interactions. With
these advances in membrane complexity, the height of embedded pro-
teins could be explicitly accounted for, introducing the concept of hy-
drophobic mismatch as a means to couple membrane compression
and curvature to the protein.

Here we have argued that the next generation of continuummodels
must adopt a more realistic representation of the protein both in terms
of its chemical composition and its geometric shape [122,127,128,131,
132,170]. These steps require moving away from treating proteins as
simple geometric shapes and employing modern molecular modeling
methods together with high resolution structures to represent the
protein. In Section 6, we presented our approach for merging protein
biophysicswith continuumelasticity theory to better understandmem-
brane protein interactions. By employing continuum electrostatics and
fast non-polar estimates of the energy, the calculations remain extreme-
ly fast compared to CG and atomisticMD, but retain amino acid level de-
tail. Thus, our model can be used to make in silico point mutations that
can be tested experimentally, as we successfully did for the RegIIIα
toxin [147].

In Sections 6 and 7, we highlighted our most recent advances to
our continuum elasticity solver, in which we have developed new
methods for defining the protein–membrane boundary and applying
boundary conditions [153]. Themodel does a very good job at quantita-
tively predicting membrane deformations around proteins when
benchmarked against fully-atomistic MD simulations, but at a tiny frac-
tion of the computational cost. This close connection allows us to gener-
ate sound hypotheses regarding the function of membrane proteins. For
instance, both MD and our hybrid atomistic-continuum model reveal
extreme bending of the membrane around the hydrophilic groove in
nhTMEM16. Since the continuum calculations are faster, they can be
used to scan through various mutants and protein chimeras to deter-
minewhich residues are responsible for the large-scalemembrane rear-
rangements. These select residues could then be further examined with
molecular dynamics simulations, followed by experimental tests on a
much reduced subset of candidates. Thus, continuum andmolecular dy-
namics approaches can be used in a pipeline to accelerate experimental
predictions. Nonetheless, continuum elasticity approaches have unique
advantages over simulation. First, it is difficult to determine the mem-
brane bending energy from atomistic simulations, but this information
is readily available from the solution of the PDEs or from integrating sur-
faces determined from simulation (see Refs. [2,132]). Second, mem-
brane relaxation around transmembrane peptides and proteins can be
very slow [26], and simulations may not be at equilibrium. Continuum
methods do not suffer from this limitation; however, identifying and
optimizing membrane contact boundary curves can be difficult [129].

While we believe that the field is making good progress towards ac-
curate continuum models of the membrane around proteins, there is
much to be done. For instance, the comparison of continuum calcula-
tions with all-atom simulation from the Andersen and Im groups re-
vealed a failure of the continuummodels to show the correct behavior
near the protein [119]. Likewise, there are regions around nhTMEM16
in which the direction of membrane deflection predicted from the con-
tinuum calculation gives the opposite sign from the MD simulations. It
will always be difficult to describe specific lipid interactions with the
protein using a continuum or field theory, but we spent a good portion
of our review highlighting extensions that treat the orientation of the
lipids and their entropy, because we believe that adding these degrees
of freedom may significantly improve continuum models. Kim and co-

pdb:4WIS
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workers identified that continuum models failed to reproduce shell
hardening or stiffening near the protein boundary [119], andwe believe
amore in-depth description of the lipid degrees of freedommay capture
this feature. We have focused almost exclusively on the subset of con-
tinuum membrane models that have been formulated in the small
angle deflection limit and represented in the Monge gauge. In order to
address large-scale conformational changes that occur during SNARE-
mediated fusion [171] or M2 channel mediated fission [172], more so-
phisticated mathematical approaches must be employed. Moreover, as
withmany numeric schemes, the fidelity of the solution to the elasticity
equations is highly dependent on how well refined the mesh is around
the protein surfacewhere the boundary conditions are applied. Extend-
ing dense grids far from the protein creates large sets of equations that
are prohibitively difficult to solve, limiting solutions to small membrane
patches. If adaptive mesh refinement were employed [173], then large
membrane patches containing many inclusions could be examined,
and membrane mediated interactions between proteins could be
probed. This advancement would open up the possibility of studying
multi-protein processes that involve long-timescale membrane rear-
rangements at large length scales while also requiring an accurate
view of the protein–membrane interaction at short length scales.
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