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Abstract

Consistent buckling distortions of a large membrane patch (200 ! 200 Å) are

observed during molecular dynamics (MD) simulations using the Monte-Carlo

(MC) barostat in combination with a hard Lennard–Jones (LJ) cutoff. The buckling

behavior is independent of both the simulation engine and the force field but requires

the MC barostat-hard LJ cutoff combination. Similar simulations of a smaller patch

(90 ! 90 Å) do not show buckling, but do show a small, systematic reduction in the

surface area accompanied by ~1 Å thickening suggestive of compression. We show

that a mismatch in the way potentials and forces are handled in the dynamical equa-

tions versus the MC barostat results in a compressive load on the membrane. More-

over, a straightforward application of elasticity theory reveals that a minimal

compression of the linear dimensions of the membrane, inversely proportional to the

edge length, is required for buckling, explaining this differential behavior. We recom-

mend always using LJ force or potential-switching when the MC barostat is employed

to avoid undesirable membrane deformations.
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We observed consistent undesirable distortions of a membrane patch

during molecular dynamics (MD) simulations in Amber18 using the

Monte-Carlo (MC) barostat1 in combination with a standard 10 Å hard

Lennard–Jones (LJ) cutoff as recently mentioned by Im and col-

leagues2; here we report our successful efforts to ameliorate this

problem by employing force-switching (FS). The MC barostat, which is

currently implemented in Amber and OpenMM, is a relatively new

barostat that is frequently used for constant pressure simulations as it

reproduces the correct volume fluctuations, unlike the Berendsen

barostat,3 and it does not require the virial to be computed at every

time step, unlike most barostats.1 Meanwhile, a 9 or 10 Å hard cutoff

for nonbonded interactions is commonly employed to improve simula-

tion speed, as explicitly recommended for use with Amber force fields.

When these parameters are used to simulate a 200 ! 200 ! 80 Å

box, we observe significant rapid buckling of an initially flat membrane

into an egg carton pattern that then breaks xy-symmetry to relax into

a sinusoidal plane wave, as shown in Figure 1.

After this initial observation, we ran a series of test simula-

tions using different MD engines to isolate which parameter com-

binations correlate with membrane distortions (Supplementary

Table A1), comparing the MC algorithm with (1) the widely available but
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problematic, Berendsen barostat and (2) the Parrinello-Rahman barostat4

implementation in Gromacs, which like the MC algorithm properly sam-

ples volume fluctuations. All simulations used semi-isotropic pressure

scaling with coupling in the initial plane of the membrane (x–y plane) inde-

pendent of the perpendicular axis. Examination of the box dimensions

over time reveals that all simulations keep a constant volume (Supplemen-

tary Figure A1), albeit with up to 3% initial variation in the first few time

steps in some cases; however, the MC barostat when used in combina-

tion with a 10 Å hard cutoff always results in a gradual compression of

the x–y plane, and corresponding expansion along z, on the 100-ns time-

scale (yellow traces in Figure 2A–C), leading to deformations like those

shown in Figure 1.

Importantly, this phenomenon is not an artifact of a particular

MD engine or force field as the buckling is reproduced in OpenMM as

well as simulations performed with CHARMM36 (Supplementary

Table A1), though CHARMM force fields are explicitly recommended

for use with FS only. This suggests that the origin of the problem lies

with the pairing of the MC barostat and a 10 Å (or shorter) LJ cutoff

in membrane simulations. No other parameter combinations in Sup-

plementary Table A1 resulted in significant membrane deformation.

We note that most published simulations employing the MC

barostat in combination with a short LJ cutoff use smaller membrane

patches, and they appear to be free of the distortions described

above. We therefore tested whether 90 ! 90 Å bilayers undergo

buckling and found that that they do not (Supplementary Table A1

and Supplementary Figure A1F). That said, the MC barostat simulation

with 10 Å LJ cutoff does experience a 2 Å decrease of the x and

y dimensions (yellow trace in Figure 2D) and a corresponding ~1 Å

thickening of the width as if the membrane is under compression.

Taken together, the extreme buckling observed on the large mem-

brane patches coupled with the modest compression of the smaller

patch suggests that there is an effective compressive force in the
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F IGURE 2 Changes in x/y-box dimensions over time for different
combinations of system parameters. The identical length and width (x,
y) of the membrane patches are plotted against time. The color key at
the top defines combinations of barostats (MC-MC barostat or Ber-
Berendsen) with LJ treatments (10 Å cutoff or 10–12 Å force
switching). Each panel shows results for additional model combinations:
(A) large membrane patch (initially 200 ! 200 Å), Amber18.7 engine,
and Lipid17 force field (#1-#4); (B) large patch, OpenMM7.4 engine,
and Lipid17 (#9,#10); (C) large patch, OpenMM7.4 engine, and
CHARMM36 force field (#11,#12); and (D) small patch (initially
90 ! 90 Å), Amber18.7 engine, and Lipid17 (#15,#17,#18,#20). All
numbers refer to simulations in Supplementary Information Table A1

F IGURE 1 Membrane deformation induced by MC barostat and
10 Å cutoff. A 200 ! 200 Å patch of POPC membrane with the
hydrophobic lipid tails colored cyan and the head groups colored by
height (z-coordinate—Blue positive, red negative). Note that all three
panels show a 2 ! 2 array of four simulation cells. (A) The initially flat
membrane at the start of production exhibits minor height
fluctuations. (B) By 125 ns, the membrane has buckled into an egg
cartoon shape (see text). (C) By 700 ns, buckling has continued into
nearly a steady state shape (see text)
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membrane plane when the semi-isotropic MC barostat is used with a

hard cutoff.

Changes to the LJ parameters are known to impact atomistic

properties, including the particularly sensitive lipid density. Specifi-

cally, a hard LJ truncation of 10 Å reduces long range attraction com-

pared to, say, a 10–12 Å switching distance, and might be expected to

lead to a greater area-per-lipid (APL), as it does for the Berendsen

barostat simulations (#3 and #4 in Supplementary Table A1). Why

then does the MC barostat compress membranes when a short hard

cutoff is employed? We believe that this arises from an inconsistency

between the way forces and potentials are handled in the MC trial

box-size change stage versus the dynamics stage. The MC barostat

uses the potentials between pairs of atoms to determine whether a

random box rescaling is energetically favorable. For a given configura-

tion, atoms separated by a distance greater than the cutoff have zero

interaction energy. However, in the dynamics steps, it is the force

between atom pairs that is set to zero outside the cutoff distance,

which is equivalent to a potential that is a negative constant for dis-

tances greater than the cutoff distance. These two corresponding LJ

potential energy profiles are radically different (Supplemental

Figure A2), with the MC barostat energy (potential U2 in Supplemental

Figure A2) containing an effective step change in the potential favor-

ing smaller pairwise distances. This inconsistency between the

assumed potentials in the MC and the MD steps leads to a discrep-

ancy between the target equilibrium lipid densities in the bilayer, with

a higher target density in the MC steps compared to the dynamics,

introducing an effective compressive bias in the XY plane (see Supple-

mentary Information Section 3).

We believe the problematic systems then evolve as follows. The

flattened, effective potential employed during dynamics leads to

lower in-plane lipid density by promoting out-of-plane lipid fluctua-

tions resulting in membrane thickening. Meanwhile, the MC barostat

favors higher in-plane lipid densities than the dynamics biasing vol-

ume trial moves toward compression of the xy-area over expansion.

This area reduction exacerbates the crowding experienced during

dynamics and the bilayer further thickens. This positive feedback

cycle continues, eventually buckling the membrane. By using poten-

tial or force switching, even over very short distances, the target

densities are consistent with one another, and the effective com-

pression is removed so the membranes do not buckle (Supplemen-

tary Table A1, see simulation #9 vs. #25–27). Importantly, this

process does not occur when a hard cutoff is employed with either

the Berendsen or the Parrinello-Rahman barostats because they cal-

culate the pressure from the virial, which uses MD forces—not

energies—to drive changes in the box size based on the difference

from the target pressure.

Next we employed an elastic energy model of the membrane that

includes an energetic cost for in-plane compression together with a

Helfrich-like bending energy5 to attempt to understand why small

membranes only compress while large membranes buckle (see Supple-

mentary Information Section 1 and Reference 6). According to this

model, buckling occurs when the x/y cell dimensions decrease to the

point where bending is more energetically favorable than in-plane

compression, giving a quantitative relationship for when that thresh-

old is reached (Supplementary Information Equation (9)). When com-

bined with the estimate of compressive strain induced by employing

the MC barostat with a hard cutoff (Supplementary Information

Equation (19)), we arrive at an expression that predicts the critical

membrane length (Lcritical) beyond which initially planar membrane pat-

ches of length (L0) buckle:

L0 > Lcritical ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πκR4

4ρ20ελ
6

s

/R2 ð1Þ

where κ is the bilayer bending modulus, ρ0 is the initial lipid density

(the inverse of the APL), ε and λ are the well depth and radius, respec-

tively, of the LJ potential, and R is the applied LJ cutoff distance.

Putting this together, the compressive bias stresses the mem-

brane, and that stress tends to grow with repetitive applications of

the Metropolis algorithm until either the induced strain balances the

effective compressive load or the membrane buckles. Compressive

elastic balance is achieved quickly with the small (L0=90Å) mem-

brane patch by a simple elastic compression. Equation (1) yields an

Lcritical value of 190Å for a 10 Å hard LJ cutoff and the parameters of

our simulations, correctly predicting that the small patch would not

buckle while the 200Å patch would. We conducted additional simula-

tions to test these ideas (see Supplementary Information) including

simulations with an 8 Å hard cutoff (Lcritical =122Å) and a 12Å hard

cutoff (Lcritical =274Å), and the results are all consistent with

Equation (1). For example, a 200!200Å patch with a 12Å cutoff

does not buckle, although it does show in-plane compression (#21 in

Supplementary Table A1).

In conclusion, the extreme membrane distortions discussed here

for the larger membrane patches only occur when using the MC

barostat in combination with a 10 Å or less LJ cutoff; simply using a

switching function avoids this undesirable result. While smaller pat-

ches do not undergo extreme distortion, they do deviate from experi-

mentally derived parameters due to the effective compression; for

instance, the APL shrinks from 68.7 ± 0.9 Å2 to 65.7 ± 0.9 Å2 when

changing from a switching function to a hard cutoff (see #17 and #15

in Supplementary Information Table A1), with the former being in

general agreement with the experimental value of 68.3 ± 1.5 Å,2,7 but

not the latter. These results raise a cautionary note regarding any

membrane-containing simulation employing the MC barostat coupled

with a hard LJ cutoff, and additional analysis would be needed to

determine how other properties are impacted such as lipid-protein

interactions or properties of mixed bilayers.

1 | METHODS

Initial atomic coordinates were generated using the CHARMM-GUI

bilayer builder module.8 The “large” system contained 1200 POPC

lipids, 53,866 water molecules with 0.15 M KCl, and had initial dimensions

of 202 ! 202 ! 85 Å3. The “small” system contained 240 POPC lipids,

10,766 water molecules with 0.15 M KCl and had initial dimensions of

GOMEZ ET AL. 3



90 ! 90 ! 85 Å3. These structures were used to prepare all simulations.

Two parameter sets were used in this study: (1) the Amber Lipid179 force

field with TIP3P water10 and Joung-Cheatham ions11 (collectively referred

to as “Lipid17” or “L17” throughout), or (2) the CHARMM36 lipid force

field12 with CHARMM TIP3P water10 and standard CHARMM ions (collec-

tively referred to as “CHARMM36” or “C36” throughout).
From the starting coordinates, we initiated five separate equili-

bration runs: (a) “large” system with the Lipid17 forcefield in the

Amber engine13; (b) “large” system with the CHARMM36 forcefield in

the Amber engine; (c) “large” system with the CHARMM36 forcefield

in the OpenMM engine14; (d) “large” system with the CHARMM36

forcefield in the Gromacs engine15; and (e) “small” system with the

Lipid17 forcefield in the Amber engine. Heavy atoms were restrained

with a force constant of 1.0 kcal/mol/Å2, and restraints were eased

stepwise over 125 ps, followed by 20 ns of unrestrained dynamics.

During equilibration, treatment of Van der Waals forces was done

according to what is considered standard for the force field, that is,

for CHARMM36 Lennard-Jones (LJ) forces were switched smoothly

to zero in the range 10–12 Å, while for Lipid17 a plain cutoff of 10 Å

was used. For equilibration of all simulations, a Berendsen barostat

was used. All equilibration and production simulations used semi-

isotropic pressure coupling requiring the x and y dimensions of the

simulation cell to scale together while z scaled freely, a target pressure

of 1 atm, a 2 fs timestep, and in all cases, long range electrostatic

interactions were treated using the Particle Mesh Ewald method.16

Water molecules were kept rigid using the SETTLE algorithm,17 and

bonds to hydrogen atoms were converted to rigid constraints using

either the SHAKE18 (Amber and OpenMM) or LINCS19 (Gromacs)

algorithms. All simulations in Amber and OpenMM used a Langevin

thermostat with a friction coefficient of 1 ps%1, while those in

Gromacs used a Berendsen thermostat during equilibration and there-

after a Nose-Hoover thermostat. In all cases temperature was

maintained at 310 K. Simulations using a MC barostat applied trial

moves to the box vectors once per every 100 dynamics steps.

Each of the five equilibrated systems (coordinates, velocities, and

box vectors) was used as the common starting point for several pro-

duction trajectories with different settings and parameters outlined in

Supplementary Table A1 and here in the main text.
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Supplementary Information: Taking the

Monte Carlo gamble: How not to buckle under

the pressure!

Yessica K. Gomez, Andrew M. Natale, James Linco↵,
Charles W. Wolgemuth⇤, John M. Rosenberg†, and Michael Grabe‡

1 Elastic model of compression-induced mem-

brane buckling

We consider a scenario where the cuto↵ on the LJ potential produces an
artificial compression of the membrane that can cause buckling. To examine
whether this explanation is su�cient to explain the observed e↵ect, we use
the simplest energetic model for the membrane, with energetic costs for com-
pression and bending of the mid-plane of the membrane. If the unstressed
membrane has infinitesmal area given by dxdy and the stressed membrane
has infinitesimal area

p
gdxdy, then we can define the areal compression

energy as

EA =
�

2

Z
(
p
g � 1)2 dxdy . (1)

Here � is an areal compression modulus. We also assume that the bending
energy of the membrane is given by the standard Helfrich energy

Eb =


2

Z
K2dxdy , (2)

where  is the bending modulus and K is the mean curvature.

⇤wolg@arizona.edu
†jmr@pitt.edu
‡michael.grabe@ucsf.edu
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For a membrane that is uniformly compressed along the x and y dimen-
sions by a uniform amount � = �L/L, where L is the uncompressed length
of a side and �L is the change in length, and is buckled out of the plane by
a small amount �(x, y), the metric factor is given by

p
g ⇡ 1� 2� +

1

2

 ✓
@�

@x

◆2

+

✓
@�

@y

◆2
!

, (3)

the mean curvature is

K ⇡ 1

2

✓
@2�

@x2
+

@2�

@y2

◆
, (4)

and the total energy is

E ⇡ �

8

Z  ✓
@�

@x

◆2

+

✓
@�

@y

◆2

� 4�

!2

dxdy+


8

Z ✓
@2�

@x2
+

@2�

@y2

◆2

dxdy , (5)

which to 2nd order in � is

E ⇡ ���

Z  ✓
@�

@x

◆2

+

✓
@�

@y

◆2
!
dxdy +



8

Z ✓
@2�

@x2
+

@2�

@y2

◆2

dxdy . (6)

For a periodic distortion of the membrane with wave vector q, the energy
of this mode is

E =


8
|q|4 � �� |q|2 . (7)

Therefore, wavevectors with |q|2 < 8��/ should be unstable and buckle.
Since the largest wavelength (which corresponds to the smallest magnitude
of the wavevector) is � = L, the instability should occur when

4⇡2

L2
<

8��L

L
, (8)

or

�L >
⇡2

2�L
. (9)

The bending modulus for a membrane is estimated to be on order of
 ⇠ 20.7 kT ⇡ 8.5 ⇥ 10�10NÅ and the areal compression modulus is � ⇡
2.13⇥ 10�11N/Å (Supplementary Table A2). Therefore, for a square patch
of membrane with side of length L = 90 Å, we estimate that �L > 2.2 Å in
order to induce buckling, whereas for L = 200 Å, we predict �L > 1 Å will
cause the membrane to buckle.
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2 Area-per-lipid (APL) calculations

The area-per-lipid (APL) headgroup is an important property of bilayers.
Experimental values for POPC APL are: 68.3 ± 1.5 Å2 [1], 64.3 ± 1.3 Å2

(at 303 K), 67.3± 1.3 Å2 (at 323 K) [2]. Computationally, the CHARMM36
POPC APL values presented here are comparable to the experimental values
(see Supplementary Table A1) and consistent with published CHARMM-GUI
benchmarks in the range of 64.0 � 66.1 Å2 (simulated at 303.15 K) [3, 4].
The Amber POPC APL value is 65.6 ± 0.5 Å2 [5]. This published value
is technically for Lipid14, as there is no published reference for Lipid17;
however, we believe the Lipid17 POPC parameters are identical to Lipid14.

3 How potential cuto↵s lead to compression

in the MC barostat

We propose that a mismatch between the force and the potential that is used
for the MC barostat is the cause of compression in lipid bilayer simulations
(and consequently buckling of large bilayers). Consider forces arising from
Lenard Jones potentials where a hard cuto↵ is used (e.g., particles at dis-
tances greater than 10 Å do not interact). This corresponds to a potential
energy that is constant, but not zero, at distances greater than the cuto↵
distance. This is di↵erent than a true potential cuto↵, where the pair-wise
potential energy abruptly goes to zero at the cuto↵ distance. If the MC
barostat ignores the potential between particles at distances larger than the
cuto↵ distance, then the potential energy that leads to the dynamic forces
in the system will be inconsistent with the potential that is assumed by the
MC barostat.

To determine how this a↵ects the membrane, we note that since the
force is the gradient of the potential energy, if the force abruptly goes to
zero, then the potential goes to a constant. We, therefore, consider the
two potential energies, U1 and U2, shown below. Both potentials are a
Lennard Jones potential for distances less than the cuto↵ distance R. At
distances greater than the cuto↵ distance, U1 is equal to the potential at R,
U1(r > R) = U1(R) = �c, while U2(r > R) = 0.

For simplicity, we will assume a 2D membrane comprised of N molecules
that is contained within a box with sides L. If we can treat each molecule as
being similar, then the total potential energy of the system is just N times the

3



integral over the membrane area of the pairwise potential times the density
distribution of the molecules surrounding a specific molecule. That is, the
total potential energy is

UT = ⇡N2

Z
p(r)U(r)rdr , (10)

where p(r) is the probability distribution for two particles to be separated
by the distance r. For particles that are su�ciently far away, we expect that
p(r) 1/L2. The total potential energy for the two potentials shown above is
then

U1
T ⇡ U0 �

⇡N2c

L2

�
L2 �R2

�
= U0 � ⇡Nc

�
N � ⇢R2

�
,

U2
T = U0 , (11)

where ⇢ = N/L2,

U0 = ⇡✏N2

Z R

0

p(r)

"✓
�

r

◆12

�
✓
�

r

◆6
#
rdr , (12)

for an LJ potential of strength ✏ and minimum energy at rmin = 21/6�.
The approximately equal to sign in the first equation represents that the
probability densities p(r) are only approximately equal for U1 and U2. We
define the equilibrium density for this potential to be ⇢0. For small deviations
away from this density, the potential can be approximated as being quadratic
in the areal strain, (A�A0)/A0 = (⇢0�⇢)/⇢, and consequently, approximately
quadratic in the density:

U0 ⇡
�L2

0

2

✓
⇢0
⇢

� 1

◆2

⇡ �L6
0

2N2
(⇢0 � ⇢)2 , (13)

where � is the areal compressibility modulus, L0 =
p
N/⇢0 is the equilibrium

box size for this potential, and ⇢ is the current density.
From these definitions, the equilibrium densities for the two potentials

can be found from

@U1

@⇢
=

@U0

@⇢
+ ⇡NcR2 =

�L6
0

N2
(⇢� ⇢0) + ⇡NcR2 ,

@U2

@⇢
=

@U0

@⇢
=

�L6
0

N2
(⇢� ⇢0) . (14)
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Therefore, the potential U1, which is the potential energy consistent with
the dynamic forces in the simulations, has a di↵erent equilibrium density
than the hard cuto↵ potential assumed by the MC barostat, such that the
equilibrium density for the dynamics is

⇢00 = ⇢0 �
⇡N3cR2

�L6
0

. (15)

If we define the equilibrium box size for U1 to be L, we can rewrite this as

N

L2
=

N

L2
0

� ⇡N3cR2

�L6
0

, (16)

or
L2
0

L2
=

✓
1� ⇡N2cR2

�L4
0

◆
, (17)

and the compressive strain imposed by the MC barostat is

L0

L
� 1 ⇡ �⇡N2cR2

2�L4
0

. (18)

Using that c = �U1(R) ⇡ 4✏ (�/R)6,

L0

L
� 1 ⇡ �2⇡N2✏�6

�L4
0R

4
. (19)

We can estimate a magnitude of the imposed strain using the following pa-
rameters: N = 1200 (number of lipids simulated on the 200 Å box size), R =
10 Å, � = 2⇥ 10�11 N/Å, and L0 = 200 Å, along with approximate param-
eters for the CHARMM carbon atoms C27 and C36, � =4 Å and ✏ = 0.02
kcal/mol = 5⇥ 10�11 N Å(per atom). With these parameters, we find

L0

L
� 1 ⇡ 7

640
= �0.011 . (20)

Therefore, the MC barostat with a hard cuto↵ on the potential imposes
an approximately 1% compressive strain on the system, which is consistent
with what we see in the 90 Å⇥90 Å simulation and is su�cient to buckle the
membrane in the 200 Å⇥ 200 Å simulation.

These results can be combined to obtain an estimate of the critical box
size at which we expect the MC barostat to induce buckling under given hard
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cuto↵ simulation conditions as follows: Equation 9 above gives the amount
of compression required to cause the membrane to buckle and equation 19
gives an estimate of the amount of compressive strain induced by the MC
barostat. Therefore setting equation 9 equal to L times equation 19 and
solving for the critical box size, Lcritical, gives the result shown below, which
is identical to equation 1 in the main text:

Lcritical =

s
⇡R4

4⇢20✏�
6

(21)

Here , R, ✏ and � are as above. ⇢0 =
N
L2
0
where N is the number of lipids

and L0 is the initial box size. That is, ⇢0 is the initial areal lipid number
density i.e. the reciprocal of the initial area per lipid (APL). Note that
Lcritical / R2. This result predicts that the membrane will buckle whenever
the initial box size, L0 > Lcritical.
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Supplementary Table A1. Description of all molecular simulations.

Box X,Y (Å) XY APL (Å2)(d) Box Z (Å) Density (g/mL)
Potential energy 
(kcal/mol x 105)

1 (A) Lipid17 Amber 18.17 Monte Carlo 10 Å hard cutoff yes 670 158.9 (±0.9) 42.1 (±0.5) 123.8 (±1.4) 1.0061 (±0.0008) -7.763 (±0.005) yes
2 (A) Lipid17 Amber 18.17 Monte Carlo 10-12 Å force-switching no 405 203.5 (±0.8) 69.0 (±0.5) 75.9 (±0.6) 1.0007 (±0.0009) -7.714 (±0.005) no
3 (A) Lipid17 Amber 18.17 Berendsen 10 Å hard cutoff yes 207 204.7 (±0.5) 69.9 (±0.4) 75.3 (±0.4) 0.9966 (±0.0006) -7.745 (±0.005) no
4 (A) Lipid17 Amber 18.17 Berendsen 10-12 Å force-switching no 304 203.2 (±0.5) 68.8 (±0.3) 76.1 (±0.4) 1.0004 (±0.0006) -7.713 (±0.005) no
5 (B) CHARMM36 Amber 18.17 Monte Carlo 10 Å hard cutoff yes 315 188.2 (±0.7) 59.0 (±0.5) 87.2 (±0.7) 1.0180 (±0.0009) -5.504 (±0.005) yes
6 (B) CHARMM36 Amber 18.17 Monte Carlo 10-12 Å force-switching no 349 197.9  (±0.6) 65.3 (±0.4) 79.7 (±0.5) 1.0078 (±0.0009) -5.407 (±0.005) no
7 (B) CHARMM36 Amber 18.17 Berendsen 10 Å hard cutoff yes 305 197.9  (±0.6) 65.3 (±0.4) 79.2 (±0.5) 1.0131 (±0.0006) -5.493 (±0.005) no
8 (B) CHARMM36 Amber 18.17 Berendsen 10-12 Å force-switching no 200 197.8  (±0.4) 65.2 (±0.3) 79.7 (±0.4) 1.0076 (±0.0006) -5.407 (±0.005) no
9 (A) Lipid17 OpenMM 7.4 Monte Carlo 10 Å hard cutoff yes 300 171.0 (±1.5) 48.7 (±0.8) 106.0 (±1.8) 1.0146 (±0.0009) -7.847 (±0.005) yes

10 (A) Lipid17 OpenMM 7.4 Monte Carlo 10-12 Å potential-switching yes 300 200.5 (±0.5) 67.0 (±0.3) 77.0 (±0.4) 1.0148 (±0.0009) -7.849 (±0.005) no
11 (B) CHARMM36 OpenMM 7.4 Monte Carlo 10 Å hard cutoff yes 300 182.5 (±1.4) 55.5 (±0.9) 92.4 (±1.4) 1.0219 (±0.0009) -5.545 (±0.005) yes
12 (B) CHARMM36 OpenMM 7.4 Monte Carlo 10-12 Å potential-switching yes 255 194.6 (±0.5) 63.1 (±0.3) 81.2 (±0.4) 1.0216 (±0.0009) -5.544 (±0.005) no
13 (C) CHARMM36 Gromacs 2018.8 Parinello-Rahman 10 Å hard cutoff no 73 196.1 (±0.6) 64.1 (±0.4) 80.7 (±0.5) 1.0134 (±0.0010) -5.544 (±0.007) no
14 (C) CHARMM36 Gromacs 2018.8 Parinello-Rahman 10-12 Å force-switching no 200 196.9 (±0.6) 64.6 (±0.4) 80.2 (±0.5) 1.0107 (±0.0012) -5.474 (±0.007) no
15 (D) Lipid17 Amber 18.17 Monte Carlo 10 Å hard cutoff yes 400 88.8 (±0.6) 65.7 (±0.9) 78.5 (±1.1) 1.0147 (±0.0020) -1.566 (±0.002) no
16 (D) Lipid17 Amber 18.17 Monte Carlo 10 Å hard cutoff no 400 88.7 (±0.5) 65.6 (±0.7) 79.4 (±0.9) 1.0054 (±0.0019) -1.548 (±0.002) no
17 (D) Lipid17 Amber 18.17 Monte Carlo 10-12 Å force-switching no 400 90.8 (±0.6) 68.7 (±0.9) 76.2 (±0.9) 1.0006 (±0.0022) -1.539 (±0.002) no
18 (D) Lipid17 Amber 18.17 Berendsen 10 Å hard cutoff yes 400 90.9 (±0.5) 68.8 (±0.8) 75.1 (±0.9) 1.0139 (±0.0015) -1.566 (±0.002) no
19 (D) Lipid17 Amber 18.17 Berendsen 10 Å hard cutoff no 400 91.9 (±0.5) 70.4 (±0.8) 74.8 (±0.9) 0.9951 (±0.0013) -1.544 (±0.002) no
20 (D) Lipid17 Amber 18.17 Berendsen 10-12 Å force-switching no 400 91.3 (±0.6) 69.4 (±0.9) 75.4 (±0.9) 1.0000 (±0.0014) -1.539 (±0.002) no
21 (A) Lipid17 Amber 18.17 Monte Carlo 12 Å hard cutoff yes 303 199.9 (±0.5) 66.4 (±0.3) 78.2 (±0.4) 1.0098 (±0.0009) -7.802 (±0.005) no
22 (A) Lipid17 Amber 18.17 Monte Carlo 8 Å hard cutoff yes 143 175.7 (±2.8) 51.5 (±1.6) 102.3 (±3.3) 0.9966 (±0.0009) -7.682 (±0.005) yes
23 (A) Lipid17 Amber 18.17 Monte Carlo 8-10 Å force-switching no 227 206.9 (±0.7) 71.3 (±0.5) 74.4 (±0.5) 0.9873 (±0.0010) -7.603 (±0.005) no
24(A) Lipid17 Amber 18.17 Monte Carlo 9.5-10 Å force-switching no 192 204.9 (±1.0) 70.0 (±0.7) 75.3 (±0.7) 0.9936 (±0.0009) -7.655 (±0.005) no
25 (A) Lipid17 OpenMM 7.4 Monte Carlo 8-10 Å potential-switching yes 300 202.3 (±0.6) 68.2 (±0.4) 75.8 (±0.5) 1.0142 (±0.0009) -7.846 (±0.005) no
26 (A) Lipid17 OpenMM 7.4 Monte Carlo 9.5-10 Å potential-switching yes 300 201.0 (±0.6) 67.3 (±0.4) 76.7 (±0.4) 1.0148 (±0.0009) -7.849 (±0.005) no
27 (A) Lipid17 OpenMM 7.4 Monte Carlo 9.95-10 Å potential-switching yes 300 200.3 (±0.7) 66.9 (±0.5) 77.2 (±0.5) 1.0148 (±0.0009) -7.849 (±0.005) no

(d) - Here area per lipid (APL) is simply calculated as the area of the simulation box in X and Y divided by the number of lipids per leaflet.

322,686 atoms 
("Large" - 1200 

POPC lipids)

Membrane 
buckles?

(b) - Typical LJ cutoff treatment options differ by engine and force field; CHARMM force field documentation recommends 
using a force-switching scheme; OpenMM lacks the option to apply force-switching but includes options for a potential-
switching scheme.
(c) - The use of an isotropic dispersion correction to approximately account for interactions beyond the cutoff differs by 
engine and force field; CHARMM force field documentation recommends not applying such a correction for simulations of 
lipid bilayers; The Amber engine uses such a correction by default - however it is automatically turned off when the force-
switching scheme is active.

64,512 atoms 
("Small" - 240 
POPC lipids)

(a) - All production trajectories marked by the same letter shared a common equilibration phase and thus began with the 
same initial coordinates, velocities, and box vectors.

Engine Barostat LJ cutoff treatment(b)
Used isotropic LJ 

dispersion 
correction(c)

Production 
length (ns)

322,686 atoms 
("Large" - 1200 

POPC lipids)

Simulation # 
(equilibration)(a) System size Force-field

Trajectory average properties over final 50 ns (± standard deviation)



SupplementaryTable A2: Membrane biophysical properties.
Parameter Value Reference
Bending modulus 8.5⇥ 10�10NÅ [6]
Areal compression modulus 2.13⇥ 10�11N/Å [6]



A Lipid17 in Amber18; large bilayer
Monte Carlo; 10Å cut (1) Monte Carlo; 10-12Å switch (2)

Berendsen; 10Å cut (3) Berendsen; 10-12Å switch (4)

B CHARMM36 in Amber18; large bilayer
Monte Carlo; 10Å cut (5) Monte Carlo; 10-12Å switch (6)

Berendsen; 10Å cut (7) Berendsen; 10-12Å switch (8)
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C Lipid17 in OpenMM 7.4; large bilayer
Monte Carlo; 10Å cut (9) Monte Carlo; 10-12Å switch (10)

D CHARMM36 in OpenMM 7.4; large bilayer
Monte Carlo; 10Å cut (11) Monte Carlo; 10-12Å switch (12)

E CHARMM36 in GROMACS 2018.8; large bilayer
Parrinello-Rahman; 10Å cut (13) Parrinello-Rahman; 10-12Å switch (14)
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F Lipid17 in Amber18; small bilayer
Monte Carlo; 10Å cut (15) Monte Carlo; 10-12Å switch (17)

Monte Carlo; 10Å cut; no dispersion correction (16)

Berendsen; 10Å cut (18) Berendsen; 10-12Å switch (20)

Berendsen; 10Å cut; no dispersion correction (19)
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G Lipid17 in Amber18; large bilayer; MC + alternate cutoffs
Monte Carlo; 12Å cut (21) Monte Carlo; 8-10Å switch (23)

H Lipid17 in OpenMM 7.4; large bilayer; MC + alternate cutoffs
Monte Carlo; 8-10Å switch (25) Monte Carlo; 9.95-10Å switch (27)

Monte Carlo; 8Å cut; (22) Monte Carlo; 9.5-10Å switch (24)

Monte Carlo; 9.5-10Å switch (26)

Supplementary Figure A1: Changes in xy dimension, z value, and box
volume over time for di↵erent combinations of system parameters. Mem-
brane/box lengths and widths (x,y) are identical. Colors corresponds to
values on the left or right ordinate. Each panel (A-G) corresponds to the
indicated combination lipid force field, molecular dynamics engine, and the
initial size of the membrane patch. The specific combination of barostat and
LJ treatment are indicated at the top of each plot along with the identifying
simulation number used in Supplementary Table A1.
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U(r)

r
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c

U1

U2

U1 = U2 

Supplementary Figure A2: Two representative potentials U1 and U2. Both
potentials are a Lennard Jones potential for r  R. For r > R, the first
potential is constant with U1(r > R) = U1(R), representing the potential
for a hard cuto↵ on the force, while U2(r > R) = 0, which represents a hard
cuto↵ on the potential.
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