
Supporting Text

Here we supply some additional material concerning the implementation of the numerical aspects
of the manuscript.

Boundary Conditions for Φm and Φp. In a typical cell, electrogenic transporters create a
difference in the electrical potential inside the cell versus outside the cell. Typically the cytoplasmic
potential, Vin, is −60 to −80 mV while the extracellular potential, Vout, is zero. We will always
choose Vout = 0. A small violoation in electroneutrality near the membrane gives rise to this
potential difference; however, more than a Debye length from the membrane electroneutrality
is restored. It is possible to model this behaviour with the Poisson-Boltzmann equation. For
simplicity, we start with the linearized Poisson-Boltzmann equation:

−∇ · [ǫ(~r)∇φ(~r)] + κ2(~r)φ(~r) =
e

kBT
4πρ(~r). (1)

However, it is easy to see that this equation does not satisfy the asymptotic boundary conditions:
Φ(x, y, z → −∞) → Vin. This oversight can easily be fixed by adding the appropriate constant
term to the equation for positions in the inner solution space:

−∇ · [ǫ(~r)∇φ(~r)] + κ2(~r)

(

φ(~r) − f(~r)
e

kBT
Vin

)

=
e

kBT
4πρ(~r), (2)

where f(~r) is 1 for all points in the inner solution space and zero otherwise. Now far from the
protein charge density where the variation of φ goes to zero, Φ(x, y, z → −∞) → Vin as desired.
We can rewrite Eq. 2 as

−∇ · [ǫ(~r)∇φ(~r)] + κ2(~r)φ(~r) =
e

kBT
4π

(

ρ(~r) +
κ2Vin

4π
f(~r)

)

. (3)

So now we see that the modified Poisson-Boltzmann equation takes the same form as Eq. 1 with
the membrane potential arising from a term that enters like a uniform source charge. On the right
hand side, the spatial dependence of κ is carried by f(~r). The linearity of Eq. 3 permits us to
write φ = φp + φm:

−∇ · [ǫ(~r)∇φp(~r)] + κ2(~r)φp(~r) = e
kBT 4πρ(~r),

−∇ · [ǫ(~r)∇φm(~r)] + κ2(~r)φm(~r) = e
kBT 4π κ2Vin

4π f(~r),
(4)

where p indicates the potential arising from the protein charges and m is the potential arising from
the slight charge separation across the membrane. Far away from the protein, φp is zero. This
condition is included in all Poisson-Boltzmann solvers; however, the boundary conditions for φm

are not standard, and they must be determined and implemented.
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We will solve for φm assuming a planar slab of low dielectric material with symmetric electrolyte
solution in the half-spaces above and below the slab. This presentation follows that of Roux (2)
with a slight change in reference geometry. By symmetry φm(~r) = φ(z), and we assign z = 0 to the
center of the membrane slab. The slab is of length L and there are three distinct regions: z > L/2
(out); L/2 ≥ z ≥ −L/2 (membrane); and z < −L/2 (in). The dielectric constant of water is ǫw,
and the dielectric constant of the membrane is assigned ǫm. The membrane region is assigned zero
ion accessibility, κ = 0, whereas the inner and outer spaces have the same value of the screening
parameter. According to Eq. 4 the appropriate differential equations in each region become

−ǫw∂2
zφm

1 (z) + κ2φm
1 (z) = 0 (region 1, out)

−ǫm∂2
zφm

2 (z) = 0 (region 2, membrane)
−ǫw∂2

zφm
3 (z) + κ2(φm

3 (z) − e
kBT Vin) = 0 (region 3, in).

(5)

From elementary electrostatics, we know that the potential is continuous at the membrane bound-
aries but the z component of the electric field is discontinuous because of the jump in dielectric
value:

φm
3 (−L/2) = φm

2 (−L/2); ǫw∂zφ
m
3 |−L/2 = ǫm∂zφ

m
2 |−L/2

φm
2 (L/2) = φm

1 (L/2); ǫm∂zφ
m
2 |L/2 = ǫw∂zφ

m
1 |L/2.

(6)

With some algebra Eqs. 5 and 6 can be solved for the potential profile in the absence of an inclusion
protein:

φm
1 (z) = e

kBT Vin
1

ǫw

ǫm

κL+2
eκ(L/2−z) (region 1, out)

φm
2 (z) = e

kBT Vin

(
1
2 − 1

ǫw

ǫm

κL+2
ǫw

ǫm

κz
)

(region 2, membrane)

φm
3 (z) = e

kBT Vin

(

1 − 1
ǫw

ǫm

κL+2
eκ(z+L/2)

)

(region 3, in)

(7)

where κ2 ≡ ǫwκ2. When calculations are performed using APBS in the presence of an electric field,
the analytic solution, Eq. 7, is used to assign φm on the domain boundary. In order to specify this
solution, the vertical values of the top and bottom of the membrane and the dielectric constant of
the membrane must be provided at the solve step.

Rewriting Dielectric, Charge, and Ion-Accessibility Maps. Whether solving for φm or φp,
the influence of the membrane and implicit protein must be included in the calculation. Initially,
the S4 helix was placed in the desired spatial configuration. This orientation was then used to
generate dielectric, charge, and ion-accessibility maps of the molecule in solution using APBS 0.3.1

(1). Maps were generated at a coarse level and then at a finer level. We refer to this set of maps
as the positive set, and a second set of maps was generated in the same manner, but with all of
the molecule charges set to zero. We call this second set of maps the neutral set. The dielectric
value of the S4 segment was assigned ǫ = 2.0, and the solvent boundary was created by using the
molecular surface definition.
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Both sets were then modified to add the presence of a generalized protein embedded in a low-
dielectric slab acting as a surrogate membrane. The APBS 0.3.1 solver uses a finite differencing
scheme; therefore, all map points are associated with a regular grid in 3-space. Code was written
to read in the initial text maps, and then the numeric value of points on the grid were modified
based on the spatial position. Every value of the grid was looped over and checked in the following
order:

(i) Determine if the point is inside the S4 helix. If the initial dielectric map value equals ǫp = 2.0,
the point is within the helix. Dielectric map values are not changed for these points.

(ii) Determine if the point is inside the implicit protein. A series of conditional statements are
checked in order to determine if the point falls within the implicit protein. These conditions
depend on the particular hypothetical geometries posited in the main text. Points in the implicit
protein have the ion-accessibility map value set to zero. If the point falls within the implicit protein
and the initial value of the dielectric map is not ǫp = 2.0, indicating that the point is NOT inside
the S4 helix, then the dielectric map value is assigned ǫ = 10.0. Charge maps are not changed.

(iii) Determine if the point is inside the membrane. If the point does not fall within the S4 helix
or the implicit protein and it falls within the z extent of the membrane, −15 Å≤ z ≤ 15 Å, the
value of the dielectric map is set to 2.0, the ion-accessibility is set to zero, and the charge map is
not changed.

(iv) Determine if the point is in the inner solution space. If the point falls below all implicit protein
and the membrane and the initial value of the ion-accessibility is NOT zero, then the neutral
charge map is modified for the calculations of φm. The value given to the charge map position is
determined from the right hand side of Eq. 4 (bottom equation). The effective charge density, ρeff ,
follows from the right hand sides of the upper and lower equations:

e

kBT
4πρeff =

e

kBT
4π

κ2Vin

4π
.

The text maps are written in terms of the number density, neff = ρeff/e, rather than the charge
density. This consideration of the number density along with the definition of the Debye length
gives the modified value for the charge map:

neff = ǫw
κ2Vin

4πe
=

ǫwVin

4πe

(
8πe2 NaI

ǫw kBT

)

,

where I is the molar concentration of one of the salt species (assumed balanced) and Na is Avago-
dro’s number. The Debye constant above is twice the value that you will find on page 497 of ref.
3, because here it is assumed that there are mobile cationic and anionic species, not just one mobil
species. Simplifying this equation, we arrive at

neff = 0.001204428 I uin,
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where uin = eVin/kBT is the reduced inner potential and the counter-ion concentration is given in
moles per liter. The effective number density is now in inverse Ångstroms cubed, which is consistent
with the APBS solver.

The Solution Step for Electrostatic Calculations. Electrostatic solvation energies were cal-
culated with the nonlinear equation, and the membrane potential calculations were solved in a
separate step using the linearized version. In both cases, two levels of focusing were used. In the
first level, Dirichlet boundary conditions were assigned to the edge of a 300-Å cubed box centered
on the helix. Zero value was assigned to φp on the boundary, while the analytic solution to the
Poisson-Boltzmann equation for a planar geometry developed in the first section was used to assign
φm. The numeric grid then focused to a cube with a 60-Å side length. The final spatial discretiza-
tion at the finest level was 0.6 Å per grid point. Dummy runs for each of the two levels were first
run in APBS to create dielectric, charge, and ion-accessibility maps for the S4 helix in solution using
the molecular surface definition. These maps were then modified as described in the last section.

All calculations included a symmetric 100 mM salt concentration and were carried out at 298.15
K. Dielectric smoothing near the membrane and protein surfaces was not used. The solvent probe
radius was set to 2 Å for the atomistic S4 segment; however, we ignored the probe radius with
respect to the low-resolution implicit protein and bilayer.

Each configuration of the S4 molecule involved three calculations: (i) The total electrostatic energy
of the S4 helix in solution, corresponding to ∆G1 in Fig. 1d; (ii) the total electrostatic energy of the
S4 helix in the membrane-protein complex, corresponding to Φp; and (iii) the electrostatic energy
of the S4 helix in the presence of the membrane potential, corresponding to Φm. The rewritten
maps from the last section are read into APBS in order to calculate Φp and Φm for steps ii and iii.
Step ii uses the positive set of maps and Step iii uses the neutral set of maps. The charged protein
was subsequently used to calculate Em from Φm as in Eq. 3 from the main text. In principle, Step
i need only be computed once; however, for numerical accuracy, one must always calculate steps i
and iii with the S4 helix in the same configuration. This redundancy is due to the singular behavior
of φp at the positions of the point charges in the protein.

Estimate of Nonpolar Energies. The nonpolar component of the free energy for transfer from
water to lipid for a solute molecule is empirically proportional to solvent exposed surface area

∆Gnp = γ · A + b,

where γ = 0.0469 kBT/Å2 and b = −2.89 kBT (4). This empirical expression describes the transfer
of solute from water to lipid. Two of our models involve the transfer of solute from water to protein;
however, we apply the formula uniformly to all three models while realizing that the van der Waals
component of ∆Gnp is different for these two cases.

In solution, the total solvent accessibly surface area of the S4 helix is 2,600 Å2. We have estimated
the percentage of buried surface area in the three different models based on visual inspection of
the models as in Fig. 2, the corresponding energy with respect to the fully solvated state is in
parenthesis:
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model down state middle up state

lipid-exposed 85% (-100 kBT ) 100% (-120 kBT ) 70% (-85 kBT )
translation 25% (-30 kBT ) 25% (-30 kBT ) 25% (-30 kBT )
rotation 50% (-60 kBT ) 50% (-60 kBT ) 50% (-60 kBT ).

The amount of buried surface area for both the translation and rotation models is nearly constant
throughout the reaction pathway.

In the main text, we discuss the difference in total solvation energy between the down and up states
under zero applied field. From our estimates, the nonpolar energy is nearly the same in both of these
states for the translation and rotation models. Therefore, only the electrostatic component of the
free energy, Ep, contributes to the profile shape; and from Fig. 3 b and c, we see that the up state is
10 kBT lower than the down state. From the table above and Fig. 3a of the main text, the up state of
the lipid-exposed model is ∆Ep+∆Gnp = ((284)up−(318)down)+((−85)up+(−100)down) = −20 kBT
lower than the down state.

Estimating Activation Times. From Kramers’ reaction rate theory, the mean first passage time,
τ , for a process which must first surmount a sizable energy barrier is given by the inverse of the
escape rate:

τ =
2π

D
√

φ′′
min|φ

′′
max|

eφmax−φmin, (8)

where φmin,max are the values of the reduced energy at the initial minimum and the barrier crossing,
respectively (5). In our case, min refers to the down state. The reduced activation energy is
∆G = φmax − φmin, and generally, this term dominates the kinetics. However, the shape of the
energy profile influences the reaction time through the curvature of the profile both at the barrier
crossing, φ′′

max, and at the initial resting position, φ′′
min.

The activation barrier, ∆G, is a combination of the nonpolar and electrostatic energies. From the
curves in Fig. 3 a and b (redrawn here in Fig. 6) and the nonpolar energies from the last section,
we arrive at barrier heights. For both models we have

∆G = (440)max − (320)min
︸ ︷︷ ︸

electrostatic

+ (−120)max − (−100)min
︸ ︷︷ ︸

nonpolar

= 100 kBT (lipid − exposed)

∆G = (52)max − (40)min
︸ ︷︷ ︸

electrostatic

+ (−30)max − (−30)min
︸ ︷︷ ︸

nonpolar

= 12 kBT (translation).
(9)

Secondly, we must estimate the curvature of the solvation energy profiles at the maximum and min-
imum values. We have estimated the curvatures in Fig. 6, where we fit quadratic approximations
to the electrostatic free energy profiles at the relevant positions. We ignored the influence of the
nonpolar component to the solvation free energy on the curvature for the lipid-exposed model in
doing this. As we will see, the characteristic change in energy with distance in these models means
|φ′′| is usually bound between 0.01 and 10. From the fits presented in the caption of Fig. 6, we
see that the lipid-exposed model has |φ′′|max = 3 and that the translation model has |φ′′|max = 0.6.
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Despite energies that are separated by hundreds of kBT , these profiles have curvatures that are
within a factor of 5. A shortcoming of this analysis is that, over the given range, the lipid-exposed
model lacks an energy minimum, and the minimum of the translation model is a very weak meta-
stable state. In fact, we see that the green quadratic curve in Fig 6b, which gives |φ′′|min = 2, is not
a very good fit to the energy profile. The closed, or minimum, energy states were identified from
our interpretation of models from the literature; it is most likely that the linker regions between
S4-S3 and S4-S5 act as springs to restrain the S4 segment from such extreme motions. Because of
the low-resolution approach of our analysis, we have not included the mechanical effects of other
helices on the free energy of the S4 segment; however, it is unlikely that the S4 segment could move
20 Å without inducing such stresses in the nearby portions of the channel protein. Therefore, we
assume that there exists an inner free energy minimum for S4 near z = −10 in Fig. 6a for the
lipid-exposed model. Based on the three fits presented here, it is reasonable to assume that the
curvature of this minimum will be on the order of 1.

Finally, there is no indication of what the diffusion coefficient for the S4 segment should be along
the respective reaction coordinates. We have taken the lateral diffusion coefficient for gramicidin C
in lipid bilayer as an estimate, D = 3×108 Å2/s (6); however, this is an open question as discussed
in the main text. By using Eq. 8, the estimates of the activation times are then

τ = 2π
3×108

√
1·3

e100 ≈ 3 × 1038 ms (lipid − exposed)

τ = 2π
3×108

√
2·0.6

e12 ≈ 3 ms (translation).
(10)

This final calculation highlights the disparity between the two models. The errors created from our
assumptions of the curvatures of the two energy profiles are eclipsed by the large energy barrier
presented to the S4 helix by the lipid-exposed model, which makes activation nearly impossible.
Meanwhile, this back of the envelope calculation gives very reasonable results for the translation
model.
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