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SUMMARY

Primary cilia are required for Smoothened to trans-
duce vertebrate Hedgehog signals, but how Smooth-
ened accumulates in cilia and is activated is incom-
pletely understood. Here, we identify cilia-associated
oxysterols that promote Smoothened accumulation
in cilia and activate the Hedgehog pathway. Our data
reveal that cilia-associated oxysterols bind to two
distinct Smoothened domains to modulate Smooth-
ened accumulation in cilia and tune the intensity of
Hedgehog pathway activation. We find that the
oxysterol synthase HSD11b2 participates in the pro-
duction of Smoothened-activating oxysterols and
promotes Hedgehog pathway activity. Inhibiting oxy-
sterol biosynthesis impedes oncogenic Hedgehog
pathway activation and attenuates the growth of
Hedgehog pathway-associated medulloblastoma,
suggesting that targeted inhibition of Smoothened-
activating oxysterol production may be therapeuti-
cally useful for patients with Hedgehog-associated
cancers.

INTRODUCTION

Hedgehog proteins control developmental patterning and tissue

homeostasis in evolutionarily diverse organisms (Briscoe and
316 Molecular Cell 72, 316–327, October 18, 2018 Published by Else
Thérond, 2013). Misactivation of the Hedgehog (HH) pathway

can lead to cancers, including medulloblastoma, the most

common pediatric brain tumor, and basal cell carcinoma, the

most common tumor in the United States. In vertebrates, HH

signaling requires the primary cilium, an antenna-like projection

on the surface of most cells. HH ligands relieve Patched1

(PTCH1) repression of Smoothened (SMO), allowing SMO

to accumulate in cilia and activate GLI transcription factors

(Briscoe and Thérond, 2013). How SMO accumulates in cilia

and is activated is incompletely understood.

Sterol lipids are required for vertebrate HH signaling, and both

synthetic oxysterols and cholesterol can bind SMO to activate

the downstream pathway (Byrne et al., 2016; Cooper et al.,

2003; Corcoran and Scott, 2006; Dwyer et al., 2007; Huang

et al., 2016, 2018; Luchetti et al., 2016; Myers et al., 2013,

2017; Nachtergaele et al., 2012, 2013; Nedelcu et al., 2013;

Xiao et al., 2017). Synthetic oxysterols bind to the SMO N-termi-

nal extracellular cysteine-rich domain (CRD), cause SMO to

accumulate in cilia, activate the HH pathway, and stimulate the

growth of cultured medulloblastoma cells (Corcoran and Scott,

2006; Dwyer et al., 2007; Myers et al., 2013; Nachtergaele

et al., 2013; 2012; Nedelcu et al., 2013). Similarly, cholesterol

binds to the SMO CRD and can induce HH signaling in neural

progenitors, leading to the hypothesis that cholesterol is the

endogenous ligand that activates SMO (Byrne et al., 2016;

Huang et al., 2016, 2018; Luchetti et al., 2016). Phosphatidylino-

sitol 4-phosphate is enriched in the ciliary membrane, revealing

that the primary cilium can have a lipid composition distinct

from that of other cellular membranes (Chávez et al., 2015;
vier Inc.
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Garcia-Gonzalo et al., 2015). Therefore, we hypothesized that

oxysterols that activate SMO may be present in primary cilia

andmay stimulate the HH pathway specifically in this subcellular

context.

To define the oxysterol composition of cilia, we performed

mass spectrometry of the membranes of isolated cilia. We iden-

tified endogenous cilia-associated oxysterols that bind SMO,

cause SMO to accumulate in cilia, and activate the HH pathway.

Moreover, we found that cilia-associated oxysterols activate the

HH pathway through two separate domains of SMO. Either

genetic or pharmacologic inhibition of HSD11b2, an oxysterol

synthase, attenuates HH signal transduction and the growth of

HH pathway-associated medulloblastoma. Thus, oxysterols

found in primary cilia bind two distinct domains of SMO, cause

SMO to accumulate in cilia, and activate the HH pathway to pro-

mote the growth of medulloblastoma.

RESULTS

Identification of Cilia-Associated Oxysterols
To identify ciliary oxysterols, we biochemically isolated cilia from

sea urchin (Strongylocentrotus purpuratus) embryos, which

require cilia to transduce HH signals (Figures 1A and 1B; Sigg

et al., 2017; Warner et al., 2014). High-performance liquid chro-

matography-tandem mass spectrometry (HPLC-MS/MS) with

normalization to protein content revealed that sea urchin embryo

cilia are enriched in 7-keto-cholesterol (7k-C), 7b,27-dihydroxy-

cholesterol (7b,27-DHC), 24-keto-cholesterol (24k-C), and

24,25-epoxycholesterol (24,25-EC) compared to either whole

and de-ciliated embryos (Figures 1C, S1A, and S1B).

Cilia-Associated Oxysterols Bind to SMO, Activate the
Hedgehog Pathway, and Cause SMO to Accumulate
in Cilia
7k-C does not activate the HH pathway (Dwyer et al., 2007). As

the other oxysterols that were enriched in sea urchin embryo cilia

had not been previously investigated for roles in HH signaling,

we examined whether they were able to bind to SMO. We incu-

bated detergent-solubilized membranes from HEK293S cells

expressing SMOwith 20(S)-yne affinity resin and oxysterol com-

petitors. Both 7b,27-DHC and 24(S),25-EC competedwith 20(S)-

OHC for occupancy of the CRD, demonstrating that 7b,27-DHC

and 24(S),25-EC bind to SMO (Figure 1D).

TreatingciliatedNIH/3T3cellswith7b,27-DHCand24(S),25-EC

showed that both can activate the HH pathway in a dose-depen-

dent manner (Figures 1E–1H). Moreover, 7b,27-DHC and

24(S),25-EC synergized with one another to activate the HH

pathway, suggesting that cilia-associatedoxysterolsmayactivate

the HH pathway through multiple effectors or multiple domains

within a single effector (Figure 1I).

Synthetic oxysterols and cholesterol require the SMO CRD to

activate the HH pathway (Huang et al., 2016; Luchetti et al.,

2016; Myers et al., 2013). To determine whether the SMO CRD

is also necessary for cilia-associated oxysterols to activate the

HH pathway, we co-transfected ciliated Smo�/� mouse embry-

onic fibroblasts (MEFs) with a HH pathway luciferase reporter

and SMO or SMO lacking the CRD (SMODCRD) and treated

the cells with vehicle, 7b,27-DHC, 24k-C, or 24(S),25-EC. Similar
to synthetic oxysterols and cholesterol, 7b,27-DHC was unable

to activate the HH pathway through SMODCRD (Figure 1J).

In contrast, 24k-C and 24(S),25-EC were able to activate

the pathway through SMODCRD, albeit to a reduced extent,

suggesting that these two oxysterols can function indepen-

dently of the CRD through another domain of SMO (Figure 1K).

Similar to 24k-C and 24(S),25-EC, Sonic Hedgehog (SHH) acti-

vated the HH pathway through SMODCRD to a reduced extent

(Figure 1J). Together, these data indicate that 7b,27-DHC,

24k-C, and 24(S),25-EC are cilia-associated oxysterols capable

of activating SMO.

To test whether any cilia-associated oxysterols promote the

accumulation of SMO in cilia, we generated NIH/3T3 cell lines

stably expressing EGFP fusions of wild-type SMO or SMO with

the Y134F substitution (SMOY134F), which abolishes oxysterol

interaction with the CRD (Nachtergaele et al., 2013). Quantifica-

tion of ciliary immunofluorescence revealed that 7b,27-DHC,

which requires the CRD to activate the HH pathway (Figure 1J),

and 24(S),25-EC, which does not require the CRD (Figure 1K),

both inducedaccumulationofSMO-EGFP incilia (Figures1L, 1M,

and S2A). 7b,27-DHC did not cause SMOY134F-EGFP to accu-

mulate in cilia (Figures 1L and S2A). In contrast, 24(S),25-EC

caused SMOY134F-EGFP to accumulate in cilia, consistent with

the ability of this oxysterol to activate the HH pathway indepen-

dent of the SMO CRD (Figures 1M and S2A). Thus, 7b,27-DHC

and 24(S),25-EC are oxysterols that are present in cilia and can

promote the accumulation of SMO in cilia and activation of the

HH pathway through distinct mechanisms.

Cilia-Associated Oxysterols Activate the HH Pathway
through Separate SMO Domains
Although theSMOCRD is critical for 7b,27-DHC to activate SMO,

the dispensability of the CRD for SMO activation by 24k-C and

24(S),25-EC raises the possibility that other domains of SMO

may interact with oxysterols. Apart from the CRD, vertebrate

SMO contains a site within the transmembrane domains of the

heptahelical bundle (HHB) that binds small molecules, such as

cyclopamine (CYA) (Chen et al., 2002a, 2002b). In addition,

certain B-ring oxysterols can inhibit SMO at a site distinct from

either the CRD or the HHB (Chen et al., 2002a; Sever et al.,

2016), raising the possibility that there is another site within

SMO that interacts with 24k-C and 24(S),25-EC.

To probe whether a cilia-associated oxysterol can bind to a

domain of SMO other than the CRD, we synthesized 24k-C-

BODIPY (Figure S2B) and assessed its ability to interact with re-

combinant SMO or SMODCRD by fluorescence polarization

anisotropy. Either SMO or SMODCRD increased the polarization

of CYA-BODIPY fluorescence, consistent with the ability of

CYA to interact with either the CRD or the HHB (Figure 2A;

Chen et al., 2002a; Huang et al., 2016). Consistently, CYA-

BODIPY demonstrated positively cooperative binding to SMO

(Hill coefficient 1.6), but not to SMODCRD (Hill coefficient 0.8),

and the micromolar Kd of CYA-BODIPY binding to SMO was

four-fold lower than to SMODCRD (Byrne et al., 2016; Chen

et al., 2002a). Like CYA-BODIPY fluorescence polarization,

24k-C-BODIPY fluorescence polarization increased in the

presence of SMO (Figure 2B). 24k-C-BODIPY fluorescence po-

larization also increased in the presence of SMODCRD with a
Molecular Cell 72, 316–327, October 18, 2018 317
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Figure 1. Cilia Contain Oxysterols that Bind the SMO CRD, Activate the HH Pathway, and Cause SMO to Accumulate in Cilia

(A) Immunofluorescence of a sea urchin embryo stained for cilia (acetylated tubulin [TubAc], red) and nuclei (DAPI, blue). The scale bar represents 10 mm.

(B) Immunoblot of lysates from sea urchin cilia, de-ciliated embryos, and whole sea urchin embryos. The ciliary fraction is enriched for TubAc and does not contain

detectable components of the cytoplasm (b-actin).

(C) HPLC-MS/MS quantitation of oxysterols extracted from de-ciliated sea urchin embryos (black) and isolated cilia (green). Data are normalized to protein

concentration and plotted relative to oxysterol levels in whole embryos (dashed line). 7k-C, 7b,27-DHC, 24k-C, and 24(S),25-EC are enriched in sea urchin

embryo cilia.

(D) Anti-Myc immunoblot of detergent-solubilized membranes from HEK293S cells expressing SMO-Myc and incubated with 20(S)-yne affinity resin in the

presence of 50 mM 20(S)-OHC, 7b,27-DHC, or 24(S),25-EC in ethanol. 20(S)-OHC, 7b,27-DHC, and 24(S),25-EC all interfere with the binding of SMO-Myc to

20(S)-yne affinity resin, indicating that they bind the CRD.

(E–H) qRT-PCR assessment of Gli1 (E and G) and Ptch1 (F and H) expression by ciliated NIH/3T3 cells treated with vehicle (ethanol), 100 nM SAG, 7b,27-DHC

(E and F), or 24(S),25-EC (G and H). Data are normalized to vehicle control. 7b,27-DHC and 24(S),25-EC activate the HH pathway in a dose-dependent manner.

(I) qRT-PCR assessment of Gli1 expression by ciliated NIH/3T3 cells treated with vehicle (ethanol), 10 mM 7b,27-DHC, 10 mM 24(S),25-EC, or both. Data are

normalized to vehicle control. 7b,27-DHC and 24(S),25-EC synergistically activate the HH pathway.

(J) Luciferase activity in ciliated Smo�/� MEFs co-transfected with Gli-luciferase reporter and empty vector (EV), SMO, or SMODCRD and treated with vehicle

(ethanol), SHHN conditioned media, 10 nm SAG1.5, or ethanol complexed with 30 mM 7b,27-DHC. Data are normalized to activity in cells expressing SMO and

treated with vehicle control. 7b,27-DHC requires the CRD to activate the HH pathway.

(K) Luciferase activity in ciliated Smo�/� MEFs co-transfected with Gli-luciferase reporter and EV, SMO, or SMODCRD and treated with vehicle (1 mMMbCD) or

MbCD complexed with 30 mM cilia-associated oxysterols. Data are normalized to activity in cells expressing SMO and treated with vehicle control. 24k-C

and 24(S),25-EC do not require the CRD to activate the HH pathway.

(L and M) Ciliary fluorescence intensity from NIH/3T3 cells stably expressing SMO-EGFP or SMOY134F-EGFP and treated with vehicle (ethanol) or 30 mM

7b,27-OHC (L) or 24(S),25-EC (M). Data are from 2 separate stable cell lines normalized to the average ciliary intensity of SMO-EGFP of cells treated with vehicle.

Cilia-associated oxysterols induce SMO accumulation in cilia. Y134F substitution in the CRD blocks the effect of 7b,27-OHC, but not 24(S),25-EC, on ciliary

accumulation, further suggesting that 24(S),25-EC can activate SMO independently of the CRD.

Histogram error bars show SEM. *p % 0.05; Student’s t test. See also Figures S1 and S2A.
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Figure 2. Cilia-Associated Oxysterols and the SMOM2 Substitution Function through the CBP

(A andB) Florescence polarization anisotropy of human SMOandSMODCRD in response to 20 nMCYA-BODIPY (A) or 50 nM24k-C-BODIPY (B). Data are shown

in a.u. CYA-BODIPY binding to SMO is positively cooperative (Hill coefficient 1.6) with higher affinity than to SMODCRD (Hill coefficient 0.8). 24k-C-BODIPY binds

to SMO and SMODCRD (Hill coefficients 1) with equivalent affinities.

(C) Schematic of SMO with relative positions of CRD (red) and a predicted oxysterol binding pocket at the membrane-proximal cytoplasmic surface (CBP, aqua)

within the HHB (gray). The C-terminal domain (CTD) is also depicted in gray. Residue numbers demarcating domains are indicated.

(D–F) Docking of 24k-C and 24(S),25-EC against human SMO (PDB: 5L7D) predicts oxysterol binding to the CBP (graymesh encompasses residues in aqua). The

CBP is composed of intracellular loops and portions of transmembrane domains (TMDs) 1 (T251-I266), 3 (W339-L346), 6 (N446-I454), and 7 (W535-T553) and is

(legend continued on next page)
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Kd equivalent to that for full-length SMO, indicating that 24k-C-

BODIPY can bind to a domain of SMO other than the CRD.

To identify possible oxysterol binding sites outside of the CRD,

wecomputationally docked theoxysterols24k-Cand24(S),25-EC

in human SMOwith 4Å relaxation of side chains tomimic induced

fit. We identified a possible binding pocket comprised of cyto-

plasmic-facing portions of transmembrane domain 1 (TMD1)

(T251-I266), TMD3 (W339-L346), TMD6 (N446-I454), and TMD7

(W535-T553; Figures 2C and 2D). We named this site the cyto-

plasmic binding pocket (CBP). Within the CBP, modeling

suggested that residues D255 and N446 in human SMO (corre-

sponding to D259 and N450 in mouse SMO) could hydrogen

bond with the carbon 3 hydroxyl and iso-octyl tail oxygens of

24k-C and 24(S),25-EC, respectively (Figures 2E and 2F). There-

fore, we hypothesized that 24k-C and 24(S),25-EC activate SMO

by binding to the CBP.

To test whether the CBP participates in oxysterol-mediated

activation of SMO, we generatedmutant forms of SMOwith sub-

stitutions at either of the two residues predicted to hydrogen

bond with oxysterols (D259R or N450D; Figure S2C). We trans-

fected ciliated Smo�/� MEFs with wild-type SMO, SMOY134F,

SMOD259R, or SMON450D; stimulated the HH pathway by adding

SAG, SHH, 7b,27-DHC, or 24(S),25-EC; and assessed HH

pathway activity. SAG activated wild-type and mutant SMO,

although mutants showed decreased activity (Figures 2G and

S2D). 7b,27-DHC activated SMOD259R and SMON450D equiva-

lently to SAG but activated SMOY134F less than SAG, providing

additional evidence that 7b,27-DHC functions through the CRD

(Figure 2G). In contrast, 24(S),25-EC activation of SMOY134F,

SMOD259R, and SMON450D was less than wild-type SMO, sug-

gesting that activation by 24(S),25-EC involves both the CRD

and the CBP (Figure 2G). Further supporting the idea that the

CRD and CBP have partly overlapping functions in promoting

SMO activity, neither 7b,27-DHC nor 24(S),25-EC could activate

SMO containing substitutions in both the CRD and CBP

(SMOY134F, D259R; Figure 2G). These data suggest that cilia-asso-

ciated oxysterols activate SMO through both the CRD and CBP.

Todeterminewhether theCBP regulates accumulation of SMO

in cilia, we generated additional NIH/3T3 lines stably expressing
distant from the CRD (red). Residues D255 and N446 (corresponding to D259 and

the carbon 3 hydroxyl and iso-octyl tail oxygens, respectively, of 24k-C (E) and 2

(G) qRT-PCR assessment of Gli1 expression in ciliated Smo�/� MEFs expressing

and treated with vehicle (ethanol), 100 nM SAG, or 30 mM 7b,27-DHC or 24(S),25-

treated with vehicle. Y134F substitution in the CRD attenuates the ability of 7b,27-

in the CBP attenuate the effect of 24(S),25-EC. Combined substitutions in the CR

effect of SAG.

(H) Ciliary fluorescence intensity of NIH/3T3 cells stably expressing mouse SMO

vehicle (ethanol), 100 nM SAG, 1 mg/mL SHH, or 30 mM 7b,27-DHC or 24(S),25-EC

expressing wild-type SMO-EGFP and treated with vehicle. Y134F substitution i

mulation in cilia, whereas the D259R and N450D substitutions in the CBP block t

effect of cilia-associated oxysterols and SHH and substantially attenuate the effe

(I) Docking of 24(S),25-EC against human SMO predicts van der Waals interac

mutated in SMOM2. Interaction lengths are shown in Å.

(J) Luciferase activity of ciliated Smo�/�MEFs co-transfected withGli-luciferase r

SMOM2Y134F, SMOM2D259R, or SMOM2Y134F, D259R. Data are normalized to SMO

combined substitutions in the CRD and CBP inhibit the activity of SMOM2.

(K) Ciliary fluorescence intensity of NIH/3T3 cells stably expressing mouse SMOM

to the average ciliary intensity of cells expressing SMOM2-EGFP. Combined sub

Histogram error bars show SEM. *p % 0.05; Student’s t test. See also Figures S
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EGFP fusions of SMOD259R, SMON450D, and SMOY134F, D259R

(Figure S2C). Quantitative immunofluorescence showed that

SHH and SAG caused SMOY134F-EGFP, SMOD259R-EGFP, and

SMON450D-EGFP to accumulate in cilia, although to a lesser

extent than wild-type SMO-EGFP (Figure 2H). 7b,27-DHC

caused SMOD259R-EGFP and SMON450D-EGFP to accumulate

in cilia, but not SMOY134F-EGFP, again consistent with 7b,27-

DHC requiring the CRD to activate the HH pathway (Figure 2H).

In contrast, 24(S),25-EC failed to induce ciliary accumulation of

either SMOD259R-EGFP or SMON450D-EGFP but did cause

SMOY134F-EGFP to accumulate in cilia, further suggesting that

24(S),25-EC activity is dependent on the CBP (Figure 2H).

Combining substitutions that inhibit the function of both the

CRD and theCBP (SMOY134F, D259R) abolished the ability of either

7b,27-DHC or 24(S),25-EC to promote ciliary accumulation (Fig-

ure 2H). Together, these results suggest that 7b,27-DHC acts

through the CRD, 24(S),25-EC primarily acts through the CBP,

and the CRD and CBP have overlapping functions in promoting

the ciliary accumulation of SMO in cilia. In further support of

that hypothesis, ciliary accumulation of SMOD259R-EGFP,

SMON450D-EGFP, and SMOY134F-EGFP by SHH and SAG were

diminished, and SHH failed to cause SMOY134F, D259R-EGFP to

accumulate in cilia (Figure 2H).

SMOW535L, also called SMOM2, is a constitutively active,

oncogenic form of SMO associated with HH pathway-associ-

ated medulloblastoma and basal cell carcinoma (Lam et al.,

1999; Xie et al., 1998). How the W535L substitution activates

SMO is unknown. We discovered that W535 is located within

the CBP, and modeling suggested that W535 may form van

der Waals interactions with oxysterols (Figure 2I). To determine

whether residues involved in oxysterol binding are necessary

for SMOM2 activity, we expressed SMOM2, SMOM2Y134F,

SMOM2D259R, or SMOM2Y134F, D259R in ciliated Smo�/� MEFs.

Y134F and D259R substitutions reduced SMOM2 activity, and

combined Y134F and D259R substitutions blocked SMOM2

activity, suggesting that the CRD and CBP are both important

for oncogenic HH signaling by SMOM2 (Figures 2J and S2D).

To determine whether the CRD and CBP are important for

ciliary accumulation of SMOM2, we generated stable NIH/3T3
N450 in mouse SMO) are predicted to form hydrogen bonds (dashed lines) with

4(S),25-EC (F). Hydrogen bond lengths are shown in angstroms (Å).

wild-type mouse SMO, SMOY134F, SMOD259R, SMON450D, or SMOY134F, D259R

EC. Data are normalized to Gli1 expression in wild-type SMO-expressing cells

DHC and 24(S),25-EC to induceGli1, whereas D259R and N450D substitutions

D and CBP block the effects of cilia-associated oxysterols and attenuate the

-, SMOY134F-, SMOD259R-, SMON450D -, or SMOY134F, D259R-EGFP treated with

. Data are from 2 separate cell lines normalized to the average intensity in cells

n the CRD specifically blocks the ability of 7b,27-DHC to induce SMO accu-

he effect 24(S),25-EC. Combined substitutions in the CRD and CBP block the

ct of SAG.

tions between cilia-associated oxysterols and W535 of the CBP, the residue

eporter and oncogenic constitutively active form of SMO, SMOM2 (SMOW535L),

M2 activity. Y134F substitution in the CRD, D259R substitution in the CBP, and

2- or SMOM2Y134F, D259R-EGFP. Data are from 2 separate cell lines normalized

stitutions in the CRD and CBP block SMOM2 accumulation in cilia.

2B–S2E.



lines expressing fusions of EGFP with SMOM2 or SMOM2 with

combined Y134F and D259R substitutions. Consistent with the

functional data, quantitative immunofluorescence showed that

SMOM2Y134F, D259R-EGFP failed to accumulate in cilia, indicating

that the CRD and CBP are critical for mediating the constitutive

ciliary localization of SMOM2 (Figures 2K and S2E). Thus, as with

wild-type SMO, the CRD andCBP promote the ability of SMOM2

to activate the HH pathway.

The Oxysterol Synthase HSD11b2 Participates in SMO-
Mediated Activation of the HH Pathway
We hypothesized that enzymes involved in cilia-associated oxy-

sterol biosynthesis would be enriched in domains of active HH

signaling. To begin to test that hypothesis, we performed RNA

sequencing of the mouse Math1-Cre SmoM2c/WT model of

HH-pathway-associated medulloblastoma, in which constitu-

tively active SMOM2 is specifically expressed in the cerebellar

external granule layer (EGL). Among the diverse oxysterol syn-

thases expressed in medulloblastoma, hydroxysteroid 11-b de-

hydrogenase 2 (Hsd11b2) displayed the highest differential

expression and was 864- ± 82-fold higher in Math1-Cre

SmoM2c/WT medulloblastomas than in control cerebella (Fig-

ures 3A, S3A, and S3B). Similar to mouse medulloblastoma,

HSD11b2 was also enriched in human HH pathway-associated

medulloblastoma (Figures 3B, S3C, and S3D).

During development, HSD11b2 is expressed in domains of

active HH signaling, including the EGL (Heine and Rowitch,

2009; Náray-Fejes-Tóth and Fejes-Tóth, 2007). Given the devel-

opmental expression pattern of HSD11b2, and the finding that

HSD11b2 is dramatically upregulated in HH pathway-associated

medulloblastoma, we hypothesized that HSD11b2 could partic-

ipate in the production of SMO-activating oxysterols.

PTCH1 represses the HH pathway upstream of SMO, whereas

SUFU represses the HH pathway by binding to GLI transcription

factors downstream of SMO (Briscoe and Thérond, 2013). Sterol

depletion blocked HH pathway activity in ciliated Ptch1�/�MEFs

but had no effect in ciliated Sufu�/� MEFs, consistent with a role

for sterols downstream of PTCH1 and upstream of SUFU (Fig-

ure 3C). To test the hypothesis that HSD11b2 potentiates HH

pathway induction, we depleted HSD11b2 using short hairpin

RNAs (shRNAs) in ciliated Ptch1�/� and Sufu�/� MEFs (Fig-

ure S3E). Like sterol depletion, depleting HSD11b2 attenuated

HH signaling in Ptch1�/� MEFs, but not Sufu�/� MEFs, suggest-

ing that HSD11b2 modulates HH signaling downstream of

PTCH1 and upstream of SUFU (Figures 3D and 3E).

HSD11b2 is inhibited by a compound in licorice (Farese et al.,

1991;Monder et al., 1989). We hypothesized that carbenoxolone

(CNX), a derivative of the HSD11b2 inhibitor in licorice, would

block HH signaling by inhibiting oxysterol production. In support

of that hypothesis, we found that CNX reduced HH pathway

activity in a dose-dependent manner in Ptch1�/� MEFs, but

not Sufu�/� MEFs (Figures 3F and 3G).

To determine whether HSD11b2 regulates SMO, we ex-

pressed SMO or SMODCRD in ciliated Smo�/� MEFs, stimu-

lated with SHH with or without HSD11b2 inhibition, and

measured pathway activity. CNX inhibition of HSD11b2 reduced

HH signaling through SMObut had no effect on signaling through

SMODCRD, suggesting that HSD11b2 promotes the production
of oxysterols that act through the CRD (Figure 3H). Competition

assays with BODIPY-CYA demonstrated that CNX does not

directly antagonize SMO at the CYA-binding pocket (Fig-

ures S3G and S3H).

Given that cilia-associated oxysterols can bind the CRD and

induce SMO accumulation in cilia, we hypothesized that

HSD11b2 would also regulate SMO accumulation in cilia.

Indeed, in NIH/3T3 cells stimulated with either SHH or SAG,

pharmacologic inhibition of HSD11b2 reduced the ciliary accu-

mulation of SMO (Figures 3J, 3K, and S3F). Together, these

data indicate that HH signaling induces expression of

HSD11b2, which promotes SMO activity through production of

oxysterols that act at the CRD (Figure 3L).

HSD11b2 and CYP27A1 Participate in the Production of
SMO-Activating Oxysterols
Overexpression of HSD11b2 in ciliated NIH/3T3 cells conferred

resistance to CNX but did not activate the HH pathway (Fig-

ures S3I and S3J). One interpretation of these data is that

HSD11b2 generates a precursor molecule that requires down-

stream processing by a rate-limiting enzyme to activate SMO.

7k-C is present in sea urchin embryo cilia (Figure 1C), and we

hypothesized that HSD11b2 converts 7b-OHC to 7k-C as a pre-

cursor for biosynthesis of 7-keto,27-hydroxycholesterol (7k,27-

OHC) and 7b,27-DHC, both of which bind to SMO and promote

SMO activity (Myers et al., 2013) (Figure 4A). To test whether

HSD11b2 can generate 7k-C, we cultured HEK293T cells over-

expressing HSD11b2 with 7b-OHC or the related oxysterol

7a-OHC and used HPLC-MS/MS to assess 7k-C production.

HSD11b2 increased 7k-C production in 7b-OHC-treated cells,

but not in 7a-OHC-treated cells (Figure 4B). 7k-C production in

HEK293T cells overexpressing HSD11b2 was inhibited by CNX

(Figure 4B), suggesting that HSD11b2 converts 7b-OHC to 7k-C.

To assess whether HSD11b2 participates in the production of

cilia-associated oxysterols, we biochemically isolated cilia from

pig (Sus scrofa) LLC-PK1 renal cells (Figures 4C and 4D), which

express Hsd11b2 (Figure S3K). HPLC-MS/MS analysis revealed

that LLC-PK1 cilia, like sea urchin cilia, were enriched in 7k-C

(Figures 4E, S1C, and S1D). Pharmacologic inhibition of

HSD11b2 reduced 7k-C in LLC-PK1 cells and cilia (Figure 4E),

further indicating that HSD11b2 generates 7k-C.

To test the hypothesis that HSD11b2 converts 7b-OHC to

7k-C as a precursor for the biosynthesis of SMO-activating oxy-

sterols, we cultured ciliated Ptch1�/� MEFs in oxysterols and

Hsd11b2 shRNAs or CNX. Following genetic or pharmacologic

inhibition of HSD11b2, the addition of 7k-C, 7b,27-DHC, and

7k,27-OHC restored HH pathway activity (Figures 4F, 4G, and

S3L). Thus, 7k-C, 7b,27-DHC, and 7k,27-OHC function down-

stream of HSD11b2 to activate the HH pathway.

Sterol 27-hydroxylase (CYP27A1) converts 7k-C into 7k,27-

OHC (Figure 4H; Heo et al., 2011), and we hypothesized that

CYP27A1 acts downstream of HSD11b2 to generate SMO-acti-

vating oxysterols. LLC-PK1 cells do not transduce HH signals

and do not express Cyp27a1 (Figure S3K). However, expression

of CYP27A1 in LLC-PK1 cells was sufficient to activate the HH

transcriptional program, suggesting that absence of CYP27A1

limits the production of a SMO-activating oxysterol in LLC-PK1

cells (Figure 4I). Like HSD11b2, shRNA-mediated depletion of
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Figure 3. HSD11b2 Promotes HH Pathway Activation and Causes SMO to Accumulate in Cilia in a Manner that Requires the CRD

(A) RNA sequencing of medulloblastomas from P35 Math1-Cre SmoM2c/WT mice compared to control cerebella of P35 SmoM2c/WT littermates indicates that

Hsd11b2 expression is 864- ± 82-fold higher in HH pathway-associated medulloblastoma.

(B) Re-analysis of human transcriptome data SPR008292 indicates that HSD11b2 expression is highest in HH pathway-associated medulloblastoma. Data are

shown in a.u.

(C) qRT-PCR assessment of Gli1 expression in ciliated Ptch1�/� and Sufu�/� MEFs treated with vehicle (water) or 1% MbCD and 20 mM pravastatin to deplete

sterols. Data are normalized to vehicle treatment. Sterol depletion inhibits HH pathway activation caused by loss of PTCH1, but not loss of SUFU, consistent with

a critical role for sterols in SMO activation.

(D) qRT-PCR assessment of Hsd11b2 and Gli1 expression in ciliated Ptch1�/� MEFs transduced with 1 of 2 different Hsd11b2 shRNAs. Data are normalized to

expression in scrambled shRNA control-transduced cells. Hsd11b2 knockdown (KD) inhibits HH pathway activation downstream of PTCH1.

(E) qRT-PCR assessment of Hsd11b2 and Gli1 expression in ciliated Sufu�/� MEFs transduced with Hsd11b2 shRNAs. Data are normalized to expression in

scrambled shRNA control-transduced cells.Hsd11b2 KD does not inhibit HH pathway activation caused by loss of SUFU, consistent with HSD11b2 acting at the

level of SMO.

(F) qRT-PCR assessment of Gli1 expression in ciliated Ptch1�/� MEFs treated with vehicle (water) or CNX. Data are normalized to expression in vehicle-treated

cells. Pharmacologic inhibition of HSD11b2 inhibits HH signaling downstream of PTCH1 in a dose-dependent manner.

(G) qRT-PCR assessment of Gli1 expression in ciliated Sufu�/� MEFs treated with vehicle (water) or 400 nM CNX. Data are normalized to expression in vehicle-

treated cells. Pharmacologic inhibition of HSD11b2 does not inhibit HH pathway activation caused by loss of SUFU.

(H) Luciferase activity of ciliated Smo�/� MEFs co-transfected with Gli-luciferase reporter and SMO or SMODCRD and treated with vehicle (water) or 1 mg/mL

SHH, with or without 400 nM CNX. Data are normalized to luciferase activity of SMO-expressing cells treated with vehicle. The CRD is required for CNX to

block HH pathway stimulation by SHH.

(I) qRT-PCR assessment ofGli1 expression in ciliated NIH/3T3 cells treated with vehicle (water), 1 mg/mL SHH, or 100 nM SAG, with or without 400 nMCNX. Data

are normalized to expression in vehicle-treated cells. Pharmacologic inhibition of HSD11b2 blocks HH pathway stimulation by SHH or SAG.

(J) Immunofluorescence of endogenous SMO (red) localization to cilia (ARL13B, green) in NIH/3T3 cells treatedwith vehicle (water), 1 mg/mLSHH, or 100 nMSAG,

with or without 400 nM CNX. The scale bar represents 1 mm.

(K) Quantitation of SMO ciliary immunofluorescence normalized to intensity in vehicle-treated cells. Pharmacologic inhibition of HSD11b2 blocks SMO accu-

mulation in cilia by SHH or SAG.

(L) Model of the HSD11b2-mediated HH pathway activation. Pathway activators are shown in green. Pathway inhibitors are shown in red.

Histogram error bars show SEM. *p % 0.05; Student’s t test. See also Figure S3.
CYP27A1 inhibited HH pathway activity in Ptch1�/� MEFs (Fig-

ures 4J and S3M). 7b,27-DHC and 7k,27-OHC, but not 7k-C,

restored HH signaling following depletion of CYP27A1 (Fig-

ure 4J). Thus, CYP27A1 functions downstream of 7k-C in the

pathway of SMO-activating oxysterol biosynthesis. A model

that accounts for these data is that (1) HSD11b2 oxidizes

7b-OHC to 7k-C, (2) CYP27A1 oxidizes 7k-C to 7k,27-OHC,

and (3) reactive oxygen species reduce 7k,27-OHC to 7b,27-

DHC (Figure 4K). Both 7k,27-OHC and 7b,27-DHC bind to the
322 Molecular Cell 72, 316–327, October 18, 2018
CRD, cause SMO to accumulate in cilia, and induce HH pathway

activity.

Oxysterol Biosynthesis Potentiates Cerebellar and
Oncogenic HH Signaling
Hsd11b2 is strongly expressed in the neonatal cerebellum,

raising the possibility that it participates in cerebellar develop-

ment (Figure 5A; Pal et al., 2011). To test that hypothesis, we

conditionally deleted Hsd11b2 (Hsd11b2c/c; Jiang et al., 2013)
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Figure 4. HSD11b2 and CYP27A1 Participate in the Biosynthesis of

SMO-Activating Oxysterols

(A) Anti-Myc immunoblot of detergent-solubilized membranes from HEK293S

cells expressing Myc-tagged SMO and incubated with 20(S)-yne affinity resin

in the presence of 50 mM of the indicated oxysterols. 7b,27-DHC and 7k,27-

OHC, but not 7k-C, compete for occupancy of 20(S)-yne affinity resin, indi-

cating that 7b,27-DHC and 7k,27-OHC bind the CRD.

(B) HPLC-MS/MS measurement of 7k-C in HEK293T cells transfected with

empty vector or expressing HSD11b2 and incubated with vehicle (ethanol) or

10 mM 7a-OHC or 7b-OHC, with or without 400 nM CNX. Data are normalized

to deuterated 7k-C internal standards and vehicle-treated cells transfected

with empty vector. HSD11b2 converts 7b-OHC to 7k-C and is inhibited

by CNX.

(C) Immunofluorescence of a primary cilium (ARL13B, green), basal body

(g-tubulin, red), and nucleus (DAPI, blue) of a LLC-PK1 cell. The scale bar

represents 5 mm.

(D) Immunoblot of lysates from LLC-PK1 cells and isolated cilia. The ciliary

fraction is enriched for the ciliary component acetylated tubulin (TubAc) and

does not contain detectable components of the cytoplasm (b-actin) or Golgi

(GM130) or HSD11b2.

(E) HPLC-MS/MS measurement of 7k-C in LLC-PK1 cells and isolated cilia

treated with vehicle (ethanol) or 400 nM CNX. Data are normalized to protein

concentration in each sample relative to 7k-C of cells treated with vehicle.

LLC-PK1 cilia are enriched in 7k-C, and pharmacologic inhibition of HSD11b2

reduces cellular and ciliary 7k-C.

(F) qRT-PCR assessment of Gli1 expression in ciliated Ptch1�/� MEFs trans-

duced with scrambled control or Hsd11b2 shRNAs and treated with 1 mM

MbCD vehicle or 30 mM of the indicated oxysterols. Data are normalized to

expression in cells transduced with scrambled shRNA and treated with

vehicle. 7k-C, 7b,27-DHC, and 7k,27-OHC restore HH signaling to Hsd11b2-

depleted cells.

(G) qRT-PCR assessment ofGli1 expression in ciliated Ptch1�/�MEFs treated

with 1 mMMbCD vehicle, 400 nM CNX, and 30 mMof the indicated oxysterols.

Data are normalized to Gli1 expression in vehicle-treated cells. 7k-C, 7b,27-

DHC, and 7k,27-OHC restore HH signaling after pharmacologic inhibition of

HSD11b2.

(H) HPLC-MS/MS measurement of 7k,27-OHC in HEK293S cells transfected

with empty vector or expressing CYP27A1 and incubated with vehicle

(ethanol) or 10 mM7k-C. Data are normalized to deuterated 7k,27-OHC internal

standards and vehicle-treated cells transfected with empty vector. CYP27A1

converts 7k-C to 7k,27-OHC.

(I) Luciferase activity of ciliated LLC-PK1 cells co-transfected with Gli-lucif-

erase reporter and empty vector or CYP27A1. Data are normalized to activity in

empty vector transfected cells. CYP27A1 expression in LLC-PK1 cells is

sufficient to activate HH pathway activity.

(J) qRT-PCR assessment of Gli1 expression in ciliated Ptch1�/� MEFs trans-

duced with scrambled control or Cyp27a1 shRNAs and treated with 1 mM

MbCD vehicle or 30 mM of the indicated oxysterols. Data are normalized to

expression in cells transduced with scrambled shRNA and treated with

vehicle. 7b,27-DHC and 7k,27-OHC, but not 7k-C, restore HH pathway activity

in Cyp27a1-depleted cells.

(K) Model of the biosynthesis of SMO-activating oxysterols.

Histogram error bars show SEM. *p% 0.05; Student’s t test. See also Figures

S1 and S3.
in the EGL usingMath1-Cre and found thatMath1-Cre Hsd11bc/c

mice are subviable (p = 0.01; chi-square test). HH signaling pro-

motes EGL proliferation (Corrales et al., 2006), and in mice sur-

viving to P7, deletion of Hsd11b2 decreased EGL thickness

and reduced cerebellar HH pathway activity (Figures 5B–5D).

Using HPLC-MS/MS and SmoM2c/WT cerebella, we found

that 7k-C was elevated at P14, when the cerebellum is still

developing (Figures 5E and S4). At P35, cerebellar 7k-C

decreased, paralleling decreased Hsd11b2 expression (Figures

5A and 5E). Constitutive HH pathway activation in the EGL of
Molecular Cell 72, 316–327, October 18, 2018 323
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Figure 5. HSD11b2 Promotes Developmental and Oncogenic HH

Signaling

(A) Re-analysis of mouse transcriptome data GSE23525 indicates that cere-

bellar Hsd11b2 expression decreases from birth to postnatal day 56. In

contrast, cerebellar Cyp27a1 expression remains largely stable. Data are

shown as percent of nadir.

(B) H&E-stained micrographs of P7 control Hsd11b2c/c and Math1-Cre

Hsd11b2c/c cerebella. The scale bar represents 30 mm.

(C) Quantitation of EGL thickness in Hsd11 b2c/c and Math1-Cre Hsd11b2c/c

cerebella. Homozygous genetic deletion of Hsd11b2 restricts EGL growth.

(D) qRT-PCR assessment of Gli1 expression in P7 control Hsd11b2c/c and

Math1-Cre Hsd11b2c/c cerebella. Data are normalized to expression in control

cerebella. Homozygous deletion of Hsd11b2 attenuates HH pathway activity

during cerebellar development.

(E) HPLC-MS/MS measurement of 7k-C in control SmoM2c/WT and Ptch1c/c

cerebella during development (P14) and/or adulthood (P35) as compared to

Math1-Cre SmoM2c/WT and Math1-Cre Ptch1c/c medulloblastomas. 7k-C

levels are normalized to sample weights. 7k-C levels are elevated at P14

cerebella and in HH-pathway-associated medulloblastoma.

(F) qRT-PCR assessment of Gli1 expression in P35 control SmoM2c/WT

cerebella and Math1-Cre SmoM2c/WT, Math1-Cre SmoM2c/WT Hsd11b2c/WT,

and Math1-Cre SmoM2c/WT Hsd11b2c/c medulloblastomas. Data are normal-

ized to expression in control cerebella. Homozygous deletion of Hsd11b2 at-

tenuates HH pathway activity in medulloblastoma.

(G) Weight of P35 control SmoM2c/WT cerebella and Math1-Cre SmoM2c/WT,

Math1-Cre SmoM2c/WT Hsd11b2c/WT, andMath1-Cre SmoM2c/WT Hsd11b2c/c

medulloblastomas normalized to total brain weight. Homozygous deletion of

Hsd11b2 blocks the growth of HH-pathway-associated medulloblastoma

caused by activation of SMO.

(H) Gross images of P35 control SmoM2c/WT, Math1-Cre SmoM2c/WT, and

Math1-Cre SmoM2c/WT Hsd11b2c/c brains. Homozygous deletion of Hsd11b2

attenuates the growth of HH-pathway-associated medulloblastoma caused

by activation of SMO. The scale bar represents 5 mm.

(I) Sagittal H&E-stained sections of P35 control SmoM2c/WT cerebella

and Math1-Cre SmoM2c/WT and Math1-Cre SmoM2c/WT Hsd11b2c/c me-

dulloblastoma. Homozygous deletion of Hsd11b2 reduces the number

of small round blue tumor cells and partially restores cerebellar architec-

ture in HH-pathway-associated medulloblastoma. The scale bar repre-

sents 2 mm.

(J) Kaplan-Meier curves of 27 Math1-Cre SmoM2c/WT and 32 Math1-Cre

SmoM2c/WT Hsd11b2c/c mice. Homozygous deletion of Hsd11b2 prolongs the

survival of mice with HH-pathway-associated medulloblastoma by 25%

(56 days versus 70 days; p < 0.0001; log rank test).

(K) Weight of P21 Ptch1c/c control cerebella and Math1-Cre Ptch1c/c medul-

loblastomas treated with vehicle (water) or 100 mg/g CNX by intraperitoneal

injection for 2 weeks, normalized to total brain weight. Pharmacologic inhibi-

tion of HSD11b2 attenuates the growth of HH-pathway-associated medullo-

blastoma caused by loss of Ptch1.

Histogram error bars show SEM. *p% 0.05; Student’s t test. See also Figures

S4 and S5.
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Math1-Cre SmoM2c/WT orMath1-Cre Ptch1c/c mouse models of

HH pathway-associated medulloblastoma increased 7k-C in the

P35 cerebella (Figures 5E and S4), consistent with HH pathway

stimulation of HSD11b2 expression in cerebellar granule cell pre-

cursors (Heine and Rowitch, 2009).

HSD11b2 converts cortisol to cortisone in the kidney, raising

the possibility that HSD11b2 promotes granule cell proliferation

by metabolizing glucocorticoids (Heine and Rowitch, 2009).

However, deletion of HSD11b2 in the cerebellum did not affect

glucocorticoid target gene expression (Figures S5A and S5B),

suggesting that HSD11b2 may not be critical for restraining

physiological levels of glucocorticoids in the cerebellum. In

further contrast to glucocorticoids, pharmacologic inhibition of



HSD11b2 in vivo did not increase medulloblastoma apoptosis

(Figures S5C and S5D).

In support of the possibility that oxysterol synthases produc-

ing SMO-activating ligands participate in pathogenic signaling,

homozygous genetic deletion of Hsd11b2 from the EGL of the

Math1-Cre SmoM2c/WT mice reduced HH pathway activity in

medulloblastoma (Figure 5F). Homozygous genetic deletion of

Hsd11b2 also reduced tumor weight and the prevalence of small

round blue cells characteristic of medulloblastoma, as well as

partially restored cerebellar architecture (Figures 5G–5I). These

changes were associated with prolongation in survival of

Math1-Cre SmoM2c/WT Hsd11b2c/c mice relative to Math1-Cre

SmoM2c/WT animals (70 days versus 56 days; p < 0.0001; log

rank test; Figure 5J).

We hypothesized that, like genetic deletion of Hsd11b2, CNX-

mediated inhibition of HSD11b2 might inhibit the growth of HH

pathway-associated cancer. Treatment of cultured basal cell

carcinoma (ASZ) and medulloblastoma (Med1) cells with CNX

reduced HH pathway activity (Figures S5E and S5F). Mass spec-

trometry confirmed that CNX crosses the blood brain barrier

in vivo (Figure S5G; Heine and Rowitch, 2009). Therefore, we

treated Math1-Cre Ptch1c/c mice with CNX. Similar to homozy-

gous genetic deletion of Hsd11b2 in Math1-Cre SmoM2c/WT

mice, pharmacological inhibition of HSD11b2 reduced tumor

weight and the prevalence of small round blue cells in Math1-

Cre Ptch1c/c medulloblastomas (Figures 5K, S5H, and S5I).

DISCUSSION

We have identified cilia-associated oxysterols that promote

ciliary accumulation of SMO and activate the HH pathway

through two separate domains of SMO. The CRD, an N-terminal

extracellular domain, was previously identified as a site of action

for synthetic oxysterols and cholesterol (Myers et al., 2013;

Nachtergaele et al., 2012, 2013; Nedelcu et al., 2013). The sec-

ond site, the CBP, is at the membrane-cytoplasmic interface,

and like the CRD, substitutions within the CBP abrogate SMO

activity. HSD11b2, an oxysterol synthase expressed in regions

of active HH signaling, participates in the production of SMO-

activating oxysterols that activate the CRD. Consistently, we

find that either genetic deletion of HSD11b2 or pharmacologic in-

hibition with a compound from licorice diminishes HH signal

transduction and the growth of HH pathway-associated cancer.

Recent structures of SMOwith cholesterol or 20(S)-OHC in the

CRD reveal interactions between the 3b-hydroxyl group of ste-

rols and a SMO CRD aspartate (D99 in mouse SMO; Byrne

et al., 2016; Huang et al., 2016, 2018; Luchetti et al., 2016).

SMO D99 is essential for the ability of the CRD to bind sterols,

indicating that CRD binding of the 3b-hydroxyl group of sterols

is important for SMO activation (Huang et al., 2016; Nedelcu

et al., 2013). The 3b-hydroxyl group is also present in cilia-asso-

ciated oxysterols, raising the possibility that cilia-associated

oxysterols bind the CRD in a similar conformation. In the CBP,

modeling and mutagenesis similarly suggest that interaction be-

tween the oxysterol 3b-hydroxyl group and SMO D259 are

important for SMO activation.

Interestingly, W535, commonly mutated to L to oncogenic

activate SMO, is located within the CBP (Xie et al., 1998). How
the W535L substitution constitutively activates SMOM2 is un-

known. As the activity of SMOM2 depends on other CBP resi-

dues, we speculate that W535L induces a conformational

change that mimics oxysterol binding. In support of the possibil-

ity that SMOM2 does not depend on oxysterol binding to the

CBP, SMOM2 activity is independent of a cholesterol biosyn-

thetic enzyme required for wild-type SMO activity (Blassberg

et al., 2016).

For an oxysterol to be a SMO agonist, it must be present in

HH-responsive cells, it must bind and activate SMO, and it

must be required for pathway activity. We have shown that

7b,27-DHC, 24k-C, and 24,25-EC are produced by sea urchin

and mammalian cells and bind and activate SMO. Moreover,

the contribution of HSD11b2 to oncogenic HH signaling sug-

gests that the oxysterols produced by enzymes are required

for high-level pathway activity, providing evidence that oxyster-

ols are relevant endogenous SMO agonists.

We propose that the SMOCRDandCBP are activated through

binding oxysterols. As SMO-activating oxysterols are enriched in

the ciliary membrane, perhaps SMO only encounters its cognate

oxysterols once it has accessed this specialized compartment.

Alternatively, SMO may encounter oxysterols elsewhere where

they induce a conformation that stimulates SMO accumulation

in cilia. In either model, the involvement of oxysterols activating

SMO through two sites is reminiscent of the ‘‘two-person

concept,’’ which requires two operators to unlock separate locks

to launch a missile, a system designed to increase the fidelity of

critical decisions (Woodward, 2013).

The ability of CNX to suppress medulloblastoma growth sug-

gests that inhibiting oxysterol biosynthesis may be a useful

approach to targeting HH pathway-associated cancers. Given

the selective enrichment of HSD11b2 among molecular sub-

groups of medulloblastoma, we anticipate that oxysterol biosyn-

thesis inhibition may only be useful for HH pathway-associated

tumors. Indeed, the expression of HSD11b2 is highly cell-type-

specific (Heine and Rowitch, 2009; Náray-Fejes-Tóth and

Fejes-Tóth, 2007). Therefore, inhibiting oxysterol synthases

may be a strategy to inhibit the HH pathway in a tissue-specific

manner, thereby lessening the toxicity of HH pathway inhibition

that has limited the clinical utility of SMO antagonists in pediatric

cancer patients (Lucas and Wright, 2016).
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providing Sufu�/� MEFs, Kaitlyn Eckert for developing the modified oxysterol

extraction method used for mass spectrometry analyses done at the Univer-

sity of Texas Southwestern Medical Center, and Dr. Lindsay Raleigh for

providing natural sea water for sea urchin embryo culture. This work was

supported by grants from the NIH (HL007731 and CA212279-01), the

UCSF Physician Scientist Scholar Program, the American Society of Clinical

Oncology, the Rally Foundation for Childhood Cancer Research, and the

American Brain Tumor Association to D.R.R.; the NIH program Project Grant

to Molecular Genetics (HL20948) to J.G.M.; Cancer Research UK (C20724

and A14414) and the European Research Council (647278) to C.S.; the

NIH (AR065409 and HD092659) to S.Y.W. and L.X., respectively; the NIH

(R01GM102498), the Ludwig Cancer Institute, and the Howard Hughes Med-

ical Institute to P.A.B.; and the NIH (AR054396 and GM095941), the Bur-

roughs Wellcome Fund, and the Packard Foundation to J.F.R.

AUTHOR CONTRIBUTIONS

D.R.R., N.S., P.K.C., M.A.S., K.M.H., B.M.T., D.E., P.J., P.B., F.R.G.-G., E.B.,

A.L.K., and M.E. conducted the experiments. D.R.R., N.S., M.A.S., D.E.,

F.R.G.-G., S.Y.W., A.R.R., C.S., M.G., J.G.M., L.X., P.A.B., and J.F.R. de-

signed the experiments. D.R.R. and J.F.R. wrote the paper. All authors criti-

cally reviewed the manuscript and approved the submission.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 24, 2017

Revised: May 14, 2018

Accepted: August 21, 2018

Published: October 18, 2018

SUPPORTING CITATIONS

The following reference appears in the Supplemental Information: Heine

et al. (2011).

REFERENCES

Blassberg, R., Macrae, J.I., Briscoe, J., and Jacob, J. (2016). Reduced choles-

terol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome.

Hum. Mol. Genet. 25, 693–705.

Briscoe, J., and Thérond, P.P. (2013). Themechanisms of Hedgehog signalling

and its roles in development and disease. Nat. Rev.Mol. Cell Biol. 14, 416–429.
olecular Cell 72, 316–327, October 18, 2018
Byrne, E.F.X., Sircar, R., Miller, P.S., Hedger, G., Luchetti, G., Nachtergaele,

S., Tully, M.D., Mydock-McGrane, L., Covey, D.F., Rambo, R.P., et al.

(2016). Structural basis of Smoothened regulation by its extracellular domains.

Nature 535, 517–522.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

AcTub Sigma-Aldrich T7451

Alexa-conjugated secondary antibodies Life Technologies Multiple

ARL13B Abcam ab136648

b-actin Abcam ab8227

GFP Abcam ab290

HRP-conjugated secondary antibodies Jackson ImmunoResearch

Laboratories and Cell Signaling

Multiple

HSD11b2 Abcam ab37800 and ab115696

GM130 BD Biosciences 610822

Biological Samples

Human medulloblastoma resection samples UCSF Brain Tumor Center Tissue

Repository and Biobank

Patient identifiers available upon request

and Institutional Review Board approval.

Chemicals, Peptides, and Recombinant Proteins

BODIPY-CYA BioVision 2160

N3-BODIPY FL Tocris 5465

DAPI Thermo Fisher Scientific 62248

Hoechst 3342 Life Technologies H3570

20(S)-yne Tocris 4474

CNX Tocris 3096

Cyclopamine Tocris 1623

Vismodegib Genentech N/A

Glucocorticoids Sigma-Aldrich Multiple

SAG Merck Millipore 566660

SAG1.5 Cellagen Technology N/A

WNT-3A R&D Systems 5036

Sterols Avanti Polar Lipids Multiple

SHH R&D Systems 1845

Deposited Data

RNA sequencing from 3 Math1-Cre SmoM2cGli2-EGFP

and 3 SmoM2cGli2-EGFP female P35 littermates

NIH NCBI GEO Accession Viewer GEO: GSE104633

Experimental Models: Cell Lines

Med1 cells Ljiljana Milenkovic Lab N/A

Ptch1�/� and Smo�/� MEFs Jeremy Reiter Lab N/A

SHH Light II and HEK293-SHHN cells Philip Beachy Lab N/A

HEK293, NIH/3T3, LLC-PK1, ASZ and Flp-IN-3T3 ATCC Multiple

Sufu�/� MEFs Rune Toftgård Lab N/A

Experimental Models: Organisms/Strains

Mouse: B6.Cg-Tg(Atoh1-cre)1Bfri/J: Math1-Cre The Jackson Laboratory Same as mouse strain name

Mouse: GT(ROSA)26Sortm1(Smo/EYFP)Amc/J: SmoM2c The Jackson Laboratory Same as mouse strain name

Mouse: Ptch1tm1Mps/J: Ptch1c The Jackson Laboratory Same as mouse strain name

Mouse: Hsd11b2tm1.1Mzz: Hsd11b2c Ming-Zhi Zhang LabN Same as mouse strain name

Oligonucleotides

See Table S1 This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pcDNA3.1 Addgene pcDNA3.1

pgLAP5 Thermo Fisher Scientific pgLAP5
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Jeremy F.

Reiter (jeremy.reiter@ucsf.edu).

METHOD DETAILS

Cell Culture
Med1 cells, and Ptch1�/�, Smo�/� and Sufu�/� MEFs, were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher

Scientific,Waltham,MA) supplementedwith 10% fetal bovine serum (FBS) and glutamine. NIH/3T3, Flp-IN-3T3 and SHH Light II cells

were cultured similarly except in 10% fetal calf serum. ASZ cells were cultured in 154-CF media (Thermo Fisher Scientific) supple-

mented with glutamine, pen/strep and 4% FBS chelexed to remove calcium (6.7 parts chelexed FBS plus 1 part non-chelexed FBS).

LLC-PK1 cells were cultured in Media 199 (Thermo Fisher Scientific) supplemented with 3% FBS, bicarbonate and glutamine.

To promote ciliogenesis, cell lines other than LLC-PK1 cells were cultured in Opti-MEM (Thermo Fisher Scientific). SHH, SAG, CYA

and vismodegibwere added for 24 hr; glucocorticoids, oxysterols, and sterols were added for 30-36 hr; andCNXwas added for 48 hr.

Chemistry
Reagents and solvents were purchased from Sigma-Aldrich and used as received unless otherwise indicated. A synthetic mecha-

nism is diagramed in Figure S2B. Compound 1 was prepared as previously described (Windsor et al., 2013). Flash column chroma-

tography was carried out using a Biotage Isolera Four system and SiliaSep silica gel cartridges from Silicycle. 1H NMR spectra were

recorded on a Varian INOVA-400 400MHz spectrometer. Chemical shifts are reported in d units (ppm) relative to residual solvent

peak. Coupling constants (J) are reported in hertz (Hz). Characterization data are reported as follows: chemical shift, multiplicity

(s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants, number of protons and mass to charge ratio. LCMS analyses

were performed on a Waters Micromass ZQ/Waters 2795 Separation Module/Waters 2996 Photodiode Array Detector/Waters 2424

Evaporative Light Scattering Detector system.

To synthesize Compound 2 (Figure S2B), a 1 M solution of tetrabutyl ammonium fluoride in tetrahydrofuran (0.126 ml, 0.1 mmol)

was added to a solution of (6R)-6-[(2R,5S,15R)-5-[(tert-butyldimethylsilyl)oxy]-2,15-dimethyltetracyclo[8.7.0.02,7.011,15]heptadec-7-

en-14-yl]hept-1-yn-3-ol (1)(0.045 g, 0.1 mmol) in tetrahydrofuran (1 mL) cooled to 0�C. After stirring at room temperature for 18 h, the

reaction mixture was diluted with ethyl acetate and washed with water and brine. The organic layers were dried over magnesium

sulfate, concentrated under reduced pressure and purified by flash column chromatography (0%–50% ethyl acetate/hexanes) to

obtain 31 mg (90%) of Compound 2 as a white solid.

1H NMR (400MHz, CDCl3) mixture of isomers d 5.37-5.39 (m, 1H), 4.35 (t, J = 6.5 Hz, 1H), 3.54-3.56 (m, 1H), 2.49 (t, J = 2.3 Hz, 1H),

2.25-2.31 (m, 2H), 2.00-2.04 (m, 2H), 1.77-1.90 (m, 5H), 1.42-1.65 (m, 12H), 1.10-1.30 (m, 9H), 1.03 (s, 3H), 0.95-0.99 (m, 4H), 0.71

(s, 3H); 13C NMR (100MHz, d6-DMSO) d 140.77, 121.70, 85.03, 72.94, 72.79, 71.82, 62.88, 62.73, 56.76, 55.81, 50.11, 42.35, 42.31,

39.79, 37.26, 36.51, 35.38, 35.36, 34.29, 34.22, 31.91, 31.68, 31.13, 31.01, 28.15, 24.28, 21.09, 19.42, 18.72, 18.67, 11.89; LCMSm/z

407.06 (MNa+).

To synthesize 24k-C-yne (Figure S2B), manganese (IV) oxide, activated (0.13 g, 1.5mmol), was added to a solution of Compound 2

in tetrahydrofuran (2mL) and stirred at room temperature for 48 h. The reactionmixture was filtered through celite, the filtrate concen-

trated under reduced pressure and purified by flash column chromatography (0%–35% ethyl acetate/hexanes) to obtain 9 mg (31%)

of 24k-C-yne as colorless oil.

1H NMR (400MHz, CDCl3) d 5.37 (d, J = 5.1 Hz, 1H), 3.52-3.58 (m, 1H), 3.23 (s, 1H), 2.50-2.67 (m, 2H), 2.22-2.34 (m, 2H), 1.98-2.03

(m, 2H), 1.85-1.88 (m, 4H), 1.47-1.66 (m, 9H), 1.28-1.34 (m, 2H), 0.95-1.21 (m, 10H), 0.70 (s, 3H); 13CNMR (100MHz, CDCl3) d 188.01,

140.76, 121.67, 78.28, 77.24, 71.81, 56.73, 55.74, 50.07, 42.53, 42.41, 42.30, 39.74, 37.26, 36.50, 35.20, 31.90, 31.66, 29.79, 28.11,

24.26, 21.08, 19.41, 18.42, 11.89; LCMS m/z 405.10 (MNa+).

To synthesize 24k-C-BODIPY (Figure S2B), a solution of 0.3 M aqueous solution of copper(II) sulfate pentahydrate (4 mL,

0.0013 mmol) and 1M aqueous solution of sodium ascorbate (26 mL, 0.026) was added to a solution of BODIPY-FL-azide (5 mg,

0.013 mmol) and 24k-C-yne in N,N’-dimethylformamide/water (1 mL, 1:1). After stirring at 80�C for 18 h, the reaction mixture

was diluted with dicholoromethane (5 mL). The organic layers were washed with brine, dried over magnesium sulfate, concentrated

under reduced pressure and purified by flash column chromatography (0%–50% ethyl acetate/hexanes followed by 5% methanol/

dichloromethane) to obtain 6 mg (61%) of compound 4 as bright orange solid.
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1H NMR (400 MHz, CDCl3) d 7.11 (s, 1), 6.90 (d, J = 3.9 Hz, 1H), 6.33 (d, J = 3.9 Hz, 1H), 6.17 (s, 1H), 5.38 (d, J = 5.1 Hz, 1H), 4.25

(t, J = 6.9 Hz, 2H), 3.25-3.32 (m, 4H), 3.04-3.15 (m, 2H), 2.73 (t, J = 7.2 Hz, 2H), 2.26-2.31 (m, 4H), 2.02-2.05 (m, 4H), 1.86-1.91 (m, 4H),

1.46-1.54 (m, 16H), 0.98-1.28 (m, 12H), 0.71 (s, 3H); LCMS m/z 757.37 (MH+), 759.39 (MH-).

Cilia Isolation
Gastrula stage Strongylocentrotus purpuratus embryos were concentrated by centrifugation at 170-200 x g for 4-10 min at 4�C and

washed 3-4 times with artificial seawater. To isolate cilia, embryos were gently resuspended in 0.5M NaCl in artificial seawater

approximately 10 times the volume of the embryo pellet. The samples were immediately centrifuged at 400 x g for 5 min at 4�C to

pellet de-ciliated embryos. The supernatant was transferred to a fresh tube and centrifuged at 400 x g for another 5 min at 4�C to

pellet any remaining embryos. The supernatant was then centrifuged at 10,000 x g for 20min at 4�C and the cilia pellet was collected.

LLC-PK1 cells were cultured for 3 weeks after confluence for ciliary elongation, and at least three 15-cm diameter plates were

pooled for each treatment condition. Cells were washed in PBS, and cilia were isolated by shear force on a rotary shaker at 37�C
for 4min at 360 rotations perminute. Cell debris were removed by centrifugation at 4�C for 10min at 1,000 x g, then cilia were isolated

from the supernatant by ultracentrifugation at 4�C for 30 min at 40,000 x g (Mitchell, 2013).

Cloning
The Flp-IN-3T3 system was used to stably integrate SMO constructs in pgLAP5 (Thermo Fisher Scientific). pcDNA3.1 (Addgene,

Cambridge, MA) was used for all transient transfections. Site-directed mutagenesis with the QuikChange XL kit (Agilent Technolo-

gies, Santa Clara, CA) was used to introduce substitutions into constructs.

Competition Assays
20(S)-yne affinity resin was prepared and competition experiments were performed as described previously (Myers et al., 2013). For

BODIPY-CYA competition assays, cells were washed in PBS, fixed for 8 min in 4% paraformaldehyde, blocked for 10 min in

Opti-MEMwithout phenol red (Thermo Fisher Scientific) supplemented with 0.5% FBS, and incubated for 1 hr in blocking buffer sup-

plemented with small molecules at room temperature. Coverslips were mounted with Gelvatol mounting media following 2 additional

washes in PBS.

Expression Analysis
RNA sequencing was performed from 3 female Math1-Cre SmoM2c/wt and 3 SmoM2c/wt female P35 littermates. In brief, RNA was

isolated using TRIzol (Thermo Fisher Scientific) followed by RNeasyMini Kit cleanup (QIAGEN, Valencia, CA). Library preparation was

performed using the TruSeq RNA Library Prep Kit v2 (Illumina, San Diego, CA) and sequenced on an Illumina HiSeq 2500 to at least

30million unique reads per sample. Input sequences were analyzed in FASTQ format, with trimming of known adapters and low-qual-

ity regions using Fastq-mcf.; sequence quality control using FastQC and RseQC; alignment to the UCSC mm10 mouse genome

assembly with Bowtie 2.2.4; gene assignment using featureCounts; and Ensembl gene annotation in GTF format (Langmead and

Salzberg, 2012; Liao et al., 2014; Wang et al., 2012). EdgeR was used to calculate differential expression p values, and p.adjust

was used to calculate the false discovery rate for each p value using the Benjamini-Hochberg method (Robinson et al., 2010;

Robinson and Oshlack, 2010; Robinson and Smyth, 2008, 2007).

Fluorescence Polarization Assays
Fluorescence polarization of BODIPY FL conjugated ligands was measured on a Biotek H4 plate reader with 384 well low-volume

microplates. All experiments were equilibrated for 10 to 15 min at room temperature before reading. Samples were excited from

the top using a 485/20 nm filter set for excitation, and a 528/20 nm filter set for the emission. Serial dilutions for binding experiments

were done in protein storage buffer (10 mM HEPES pH 7.5, 150 mM NaCl, 10% glycerol, 0.03% n-dodecyl-b-D-maltoside [DDM],

0.006% cholesteryl hemisuccinate [CHS]).

Histology and Microscopy
Gross light micrographs were obtained from fresh mouse brains suspended in PBS. For histology, mouse cerebella were fixed over-

night at 4�C in 4% paraformaldehyde, washed in PBS, and embedded in paraffin. Sagittal sections were taken through the midline,

and stained with hematoxylin and eosin (H&E) or by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) using the

In Situ Cell Death Detection Kit with Fluorescein (Roche, Basel, CH). Gross and microscopic samples were imaged using an inverted

light microscope (Zeiss, Oberkochen, DE). Fluorescent microscopy was performed on an SP5 confocal microscope (Leica,

Wetzlar, DE). Image processing was completed using ImageJ (Schneider et al., 2012). For fluorescence quantifications, regions of

interest were selected and quantified with normalization to background fluorescence.

Immunoblotting
Immunoblots were performed as described previously (Raleigh et al., 2018). In brief, samples were boiled in 2x Laemmli reducing

buffer for 5 min, separated on 4%–15% gradient TGX precast gels (Bio-Rad), transferred onto nitrocellulose (Whatman, Pittsburgh,

PA) and subjected to immunoblot analysis using ECL Lightening Plus (Perkin-Elmer, Waltham, MA).
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Immunofluorescence
Cells on glass coverslips were washed in PBS and fixed in 4%paraformaldehyde for 8min. Following incubation in blocking buffer for

30min at room temperature (2.5%BSA, 0.1%Triton X-100 and 0.03%NaN3), cellswere incubatedwith primary antibodies in blocking

buffer overnight at 4�C. The next day, cells were washed 3 times in PBS and incubated with secondary antibodies and DNA dyes in

blocking buffer at room temperature for 1 hr. Following 3 final washes in PBS, coverslipsweremountedwithGelvatolmountingmedia.

Luciferase Assays
SHH Light II cells stably express a GLI-responsive Firefly luciferase reporter and pRL-TK (Promega, Madison, WI), which constitu-

tively expresses Renilla luciferase. For other cell lines, pRL-TK and reporter constructs were transiently expressed using Lipofect-

amine LTX with Plus Reagent (Thermo Fisher Scientific). HH reporter activity was quantified from pGL3-Luciferase (Promega)

containing 8 consecutive GLI binding sites. Luciferase assays with 1% control renilla construct (5 ng) and 99% reporter luciferase

construct (495 ng) were performed 72 hr after transfection using the Dual Luciferase Reporter Assay System (Promega) and aGloMax

96 Microplate Luminometer with Dual Injectors (Promega). Firefly luciferase reporter activities were calculated relative to internal

renilla luciferase controls.

Mass Spectrometry
For mass spectrometry of sea urchin samples, a modified fractionation method was used to enhance detection of dihydroxysterols

(McDonald et al., 2012). In brief, we used a two-step elution process from the aminopropyl SPE column. Column conditioning, sample

loading, and column rinsing with hexane were all performed as previously described. To elute our compounds of interest, we first

used 2x3mL of 30% diethyl ether in hexane to elute the sterol fraction, followed by 3mL of chloroform/methanol 23:1 to elute the

oxysterol fraction. Separating the cholesterol from the oxysterols allowed us to load more of the oxysterol fraction onto the HPLC

column, enhancing our detection and quantitation of trace-level oxysterols (see Figure S1 for representative chromatograms).

For mass spectrometry of LLC-PK1 and cerebellum samples, oxysterol quantification was performed relative to a d7-7-ketocho-

lesterol (d7-7kC) internal standard that was preapared as previously reported (Xu et al., 2011). The protein content of LLC-PK1 cells

and cilia was determined using the BioRad-DC protein Assay Kit (BioRad, Hercules, CA). The average protein weight of the LLC-PK1

cells and cilia were 5.29 ± 0.62 mg/mL and 0.30 ± 0.09 mg/mL, respectively. Prior to lipid extraction, d7-7k-C internal standard was

added to each sample (150 ng for cells; 25 ng for cilia). Lipid extraction was performed using the Folchmethod, in which 1mL of 0.9%

NaCl and 4mL of Folch solution (2:1 chloroform/methanol) was added to each sample. The resultingmixture was vortexed briefly and

centrifuged at 1000 rpm and 10�C for 5 min. The organic layer was recovered and dried under vacuum. The dried extracts were

reconstituted in methylene chloride (300 mL for cells; 200 mL for cilia). For UHPLC-APCI-MS/MS analysis, 100 mL of LLC-PK1 cell

and cilia lipid extracts was transferred into glass LC vials, dried under a stream of Argon, and reconstituted in 90% methanol with

0.1% formic acid (200 mL for LLC-PK1 cells; 50 mL for LLC-PK1 cilia). The cerebellums of P14 and P35 mice were homogenized

in 5 mL of 4:1 Folch/0.9% NaCl with a blade homogenizer in the presence of d7-7k-C internal standard (2 mg for P14; 1 mg for

P35). Following centrifugation, the organic layer was recovered and dried under vacuum. The dried extracts were reconstituted in

1 mL of methylene chloride. For UHPLC-APCI-MS/MS analysis, 50 mL of lipid extract was transferred into glass LC vials, dried under

a stream of Argon and reconstituted in 50 mL of 90% methanol with 0.1% formic acid. Analysis of 7-kC and other oxysterols was

performed by UHPLC-MS/MS on a triple quadrupole mass spectrometer (Sciex 6500) equipped with atmospheric pressure chemical

ionization (APCI), as described previously (Fliesler et al., 2018). Briefly, oxysterols were separated by reversed phase chromatog-

raphy on a C18 column (1.7 mm, 2.13 100 mm, Phenomenex Kinetex) using an isocratic gradient of 90%methanol with 0.1% formic

acid at a flow of 0.4 mL/min. The APCI parameters were as follows: nebulizer current, 3 mA; temperature, 350�C; curtain gas, 20 psi;

ion source gas, 55 psi. Selective reaction monitoring (SRM) was used to monitor the dehydration of the oxysterol [M+H]+ ion to

generate [M+H-H2O]+ ions (d7-7k-C, m/z 408.3 / 390.3; 7k-C, m/z 401.3 / 383.3; 7OH-C, m/z 385.3 / 367.3; 7k,27-OHC, m/z

417.3 / 399.3; 24- or 25-OHC, m/z 385.3 / 367.3; 24k-C and 24,25-EC, m/z 383.3 / 365.3), as described previously (Fliesler

et al., 2018; Xu et al., 2011, 2013) (see Figure S1 for representative chromatograms). The MS conditions for SRM analysis were

as follows: declustering potential, 80 V; entrance potential, 10 V; collision energy, 25 V; collision cell exit potential, 20 V. Data analysis

was performed with Analyst (v. 1.6.2) Quantitation Wizard. Quantitation of each oxysterol was performed against the d7-7k-C internal

standard using a relative response factor (RRF) determined from an equal mixture of each oxysterol and d7-7k-C. The resulting 7k-C

concentration was normalized to either protein content (for LLC-PK1 cells and cilia) or tissue weight (for cerebellums). Sterols, such

as cholesterol and demosterol, were analyzed using a similar LC-MS/MS method as described previously (Fliesler et al., 2018).

Targeted mass spectrometry of oxysterols in HEK293 cells was performed as described previously using deuterated 7k-C and

7k,27-OHC standards (Myers et al., 2013). Targeted mass spectrometry of CNX in mouse brain homogenate used LC-MS/MS in

positive electrospray ionizationmode. Test samples and calibration standards in eachmatrix were processed by protein precipitation

with two volumes of acetonitrile containing 50 ng/mL dextromethorphan internal standard (IS). The precipitated samples were

vortexed, centrifuged at 6,100 x g for 30 min, diluted with two volumes 0.2% formic acid in water, and subsequently analyzed by

LC-MS/MS. The analyte/IS peak area ratios versus the nominal analyte concentrations of the calibration samples in each matrix

were used to fit a calibration curve by power regression. The analyte concentrations for the calibration standards and unknown

samples were calculated using the established calibration equation for each matrix.
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Mice
B6.Cg-Tg(Atoh1-cre)1Bfri/J (Math1-Cre), GT(ROSA)26Sortm1(Smo/EYFP)Amc/J (SmoM2c) and Ptch1tm1Mps/J (Ptch1c) alleles were

obtained from The Jackson Laboratory (Bar Harbor, ME). The Hsd11b2tm1.1Mzz allele was obtained as a generous gift from

Dr. Ming-Zhi Zhang. Animals were monitored for survival until death or protocol-defined neurologic endpoints including hydroceph-

alus or ataxia, and tumor weight was normalized to brain weight. CNX was injected intraperitoneally in water vehicle at 100 mg/g for

14 consecutive days from P7 to P21.

Molecular Modeling
The Small Molecule Drug Discovery Suite 2016-1 was used for the computational modeling (Small-Molecule Drug Discovery

Suite 2016-1: Schrödinger Suite 2016-1 Virtua Screening Workflow protocol; LigPrep, version 3.7; Epik, version 3.5, Glide

version 7.0; Prime version 4.3; Schrödinger, LLC, New York, NY, 2016.). The protein from PDB 5L7D was prepared in a ready-to-

dock-format with the Protein Preparation Wizard workflow, missing side chains were added, bond orders were assigned, hydrogens

were added and disulfide bonds were created. The orientation of hydroxyl groups and proper protonation state were assigned at

pH 7, using the PROPKA version implemented in Epik version 3.5 (Olsson et al., 2011).

Each small molecule was drawnwith theMaestro graphical user interface version 10.5, and protonation states and tautomers at pH

7.0 ± 2 were predicted by Epik. Three dimensional conformers were assigned using LigPrep version 3.7 together with the OPLS force

field version 3 (Harder et al., 2016). Binding sites in the protein were identified using the SiteMap tool with default parameters resulting

in four sites. Virtual screening was carried out at each site.

For docking, search grids were erected around each of the 4 putative binding pockets with a box size of 20x20x20 Å3. Small mole-

cule poses were scored using the Glide XP scoring function, and strain energy was included in the energy value. Aromatic groups

were forced to remain planar, and a maximum of 10 poses were identified for subsequent post-docking minimization. Five lowest

energy poses were saved. The best binding poses identified from docking were all located in the cytoplasmic binding pocket

(CBP) composed of residues T251-I266, W339-L346, N446-I454 and W535-T553. These CBP poses were subsequently rescored

with the MM/GBSA protocol (Graves et al., 2008) using the VSGB solvent model and an implicit representation of the membrane.

We allowed protein flexibility up to 4 Å from the ligand tomimic induced-fit effects. Themembrane embedded residues used to define

the boundaries of the implicit membrane were determined with the Orientations of Proteins in Membranes (OPM) database (Lomize

et al., 2006).

Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR)
cDNA was synthesized from tissue and cell culture samples using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). qRT-PCR

primers are described in Table S1. qRT-PCRwas performed with SYBR Green Real-Time PCRMaster Mix (Thermo Fisher Scientific)

and Applied Biosystems (Foster City, CA) and Life Technologies (Grand Island, NY) real-time PCR systems using the DDCt method

relative to GAPDH or b-ACTIN expression.

Reagents
Antibodies and fluorescent molecules were obtained from the following suppliers: TubAc, Sigma-Aldrich (T7451, St. Louis, MO);

Alexa-conjugated secondary antibodies, Life Technologies; ARL13B, Abcam (ab136648, Cambridge, UK); BODIPY-CYA, BioVision

(Milpitas, CA); N3-BODIPY FL, Tocris; b-actin, Abcam (ab8227); DAPI, Thermo Fisher Scientific; GFP, Abcam (ab290); GM130,

BD Biosciences (610822, San Jose, CA); Hoechst 3342, Life Technologies; HRP-conjugated secondary antibodies, Jackson

ImmunoResearch Laboratories (West Grove, PA) and Cell Signaling (Grand Island, NY); HSD11b2, Abcam (ab37800 and ab115696).

Small molecules were obtained from the following suppliers: 20(S)-yne Tocris Biosciences (Bristol, UK); CNX, Torcris Biosciences;

CYA, Tocris Biosciences; vismodegib, Genentech (South San Francisco, CA); SAG,MerckMillipore (Billercia, MA); SAG1.5, Cellagen

Technology (San Diego, CA); SHH, R&D Systems (Minneapolis, MN).

Sterols were obtained from Avanti Polar Lipids (Alabaster, AL). Mission short hairpin RNAs (shRNAs), which are described in

Table S1, were obtained from Sigma-Aldrich. SHH N terminus (SHHN) was produced from HEK293-SHHN stable cells as described

previously and diluted 10-fold for cell treatments (Myers et al., 2013).

Statistics
All experiments were performed with at least 3 biologic replicates. Histograms showmean ± standard error of themean. Scatterplots

show median ± 95% confidence intervals. Overall survival was estimated using the Kaplan-Meyer method and compared by Log-

rank tests. Student’s unpaired t test or Chi-square test was used, as indicated, to compare groups. In all cases, statistical signifi-

cance, as denoted by (*), was defined as p % 0.05.

Study Approval
Animal experiments were conducted in a Laboratory Animal Resource Center as per Institutional Animal Care and Use Committee

approved protocol AN098101. Human tumor samples were obtained and handled as per the Institutional Committee on Human

Research approved protocol 10-03204.
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