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Abstract

The lumenal pH of an organelle is one of its defining characteristics and central to its biologi-

cal function. Experiments have elucidated many of the key pH regulatory elements and how

they vary from compartment-to-compartment, and continuum mathematical models have

played an important role in understanding how these elements (proton pumps, counter-ion

fluxes, membrane potential, buffering capacity, etc.) work together to achieve specific pH

setpoints. While continuum models have proven successful in describing ion regulation at

the cellular length scale, it is unknown if they are valid at the subcellular level where volumes

are small, ion numbers may fluctuate wildly, and biochemical heterogeneity is large. Here,

we create a discrete, stochastic (DS) model of vesicular acidification to answer this ques-

tion. We used this simplified model to analyze pH measurements of isolated vesicles con-

taining single proton pumps and compared these results to solutions from a continuum,

ordinary differential equations (ODE)-based model. Both models predict similar parameter

estimates for the mean proton pumping rate, membrane permeability, etc., but, as expected,

the ODE model fails to report on the fluctuations in the system. The stochastic model pre-

dicts that pH fluctuations decrease during acidification, but noise analysis of single-vesicle

data confirms our finding that the experimental noise is dominated by the fluorescent dye,

and it reveals no insight into the true noise in the proton fluctuations. Finally, we again use

the reduced DS model explore the acidification of large, lysosome-like vesicles to determine

how stochastic elements, such as variations in proton-pump copy number and cycling

between on and off states, impact the pH setpoint and fluctuations around this setpoint.
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Author summary

Organelles harbor specific ion channels, transporters, and other molecular components

that allow them to achieve specific intracellular ionic conditions required for their proper

function. How all of these components work together to regulate these concentrations,

such as maintaining a specific pH value, is complex, and continuum mathematical models

have been helpful for evaluating different mechanisms and making quantitative predic-

tions that can be tested experimentally. Nonetheless, organelles can be quite small and

some contain only a handful of free protons—can continuum models accurately describe

systems with so few molecules? We tested this by creating a discrete, stochastic (DS)

model of vesicle acidification that tracks how all of these individual molecules in the vesi-

cle change their state in time. When fitting experimental data, the DS model provides the

same parameter estimates as a corresponding continuum model, indicating that both

models are equally valid. However, the DS model additionally informs on the noise in the

vesicle. When compared to the experimental noise in pH, we show that there is no agree-

ment, because experimental fluctuations do not report on the true pH fluctuations, but

rather they report on the fluctuations in reporter molecule protonation. Given experimen-

tal limitations, our result highlights the importance of DS models in predicting noise in

organelles.

Introduction

Acidification of intracellular organelles, such as lysosomes, is achieved by the V-ATPase pro-

ton pump. That said, how organelles set and maintain specific pH environments remains

poorly understood. In addition to H+ pumping, counter-ion movement is needed to oppose

the buildup of a positive membrane potential [1]. The chloride-proton antiporters and chlo-

ride channels of the ClC family are thought to play this role in many organelles [2–5]; however,

this role is controversial in the lysosomal where cation channels have been implicated [6].

Another determinant of lumenal pH is the proton leak across the membrane, which may be

membrane mediated, occur through voltage-gated proton channels such as HV1 [7, 8], or

through other unknown proteins. Lumenal pH is also impacted by internal buffer molecules

and the numerous H+-dependent chemical reactions that occur in cellular compartments.

Many pH regulation studies have focused on assembling a parts list of the components

involved in acidification, and in doing so, they have produced valuable information regarding

the impact of specific proteins/molecules on pH. However, there are still gaps in these lists for

most organelles with few studies producing a comprehensive dissection of the protein makeup

as was done for the synaptic vesicle by the Jahn lab [9]. Additionally, most cell based studies

have reported only ensemble averaged pH measurements for different organelles, potentially

masking important compartment-to-compartment variations. Exceptions include a handful of

studies on endosomes [10], synaptic vesicles [11], and reconstituted proteoliposomes [12]. In

particular, the Krishnan lab nicely shows spatial and temporal variation in the distribution of

pH values of maturing endosomes with final lysosomal values of 5.0 ± 0.16 for 80 individual

compartments [10]. Nonetheless, the fluctuations in pH of individual compartments in time

has not been presented in a cell based assay to our knowledge. In a similar vein, the Grinstein

lab showed that lysosomes adjacent to the nucleus are more acidic than those that are distantly

positioned [13], and such heterogeneity may have functional consequences related to nutrient

response and organelle position [14]. Nonetheless, without knowing how the pH in isolated

organelles vary we have an incomplete picture of organelle function. For instance, are all
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lysosomes near pH 5, or is there a wide distribution of values in the cell ranging from mildly

acidic to very acidic? If this spread is too large, it is possible that some organelles may fail to

achieve the chemical environment required for proper function. On a related note, how does

the pH of an individual organelle change in time as enzymes and pumps activate and deacti-

vate, compartments fuse together changing the chemical make up of the membrane proteins

and lumenal contents, and the organelle ages?

Previous models based on ordinary differential equations (ODEs) have proven beneficial in

teasing out the contribution of specific components to this rather complex processes. These

models include components such as ATP-driven proton pumps, counter-ion fluxes, mem-

brane potential effects, and buffering capacity [15], and they have highlighted the importance

of the balance between V-ATPase proton pump and proton leak in setting pH along the secre-

tory pathway [16], helped tease apart glutamatergic and GABAergic effects in synaptic vesicles

[11], elucidated the role of ClC-7 antiporters in aiding lysosomal acidification [17], and gener-

ated hypotheses regarding the complex orchestration of plasma membrane, cytoplasmic, and

ruffled border elements during osteoclast-mediated bone resorption [18]. Nonetheless, ODE

models only provide an average description of a population of compartments, which may limit

their usefulness for studying isolated compartments of a heterogeneous nature. In particular,

the continuum approximation may fail for small compartments containing a handful of chem-

ical species. A synaptic vesicle, for example, is typically 20 nm in radius and has to maintain a

lumenal pH of approximately 5.5 to properly package neurotransmitters. The concentration of

free protons at pH 5.5 in this small volume however corresponds to only * 0.06 free protons

in number. The variables in ODE models can take on fractional values such as these, but non-

integer values lack physical meaning.

Recent experiments in the Stamou Lab measured for the first time the acidification of single

vesicles by single proton pumps [12]. AHA2, a P-type H+ pump from the plant Arabidopsis
thaliana, was purified and reconstituted into proteoliposomes, and acidification of isolated

vesicles was monitored through the pH sensitive fluorophore pHrodo. Individual traces

showed a great deal of variability both in time and between proteoliposomes, in part because

they revealed for the first time that AHA2 stochastically switches between active and inactive

states. An ODE model was constructed to fit the time-dependent pH traces, and although it

provided reasonable parameter estimates and new molecular insight into AHA2-mediated

proton leak, the model only describes the mean vesicular pH providing no insight into the

experimental fluctuations. Moreover, some proteoliposomes were so small that they likely con-

tained less than 1 free proton even at acidic pH values. To address these shortcomings and

build a framework for answering the questions above, we developed a discrete, stochastic (DS)

model of vesicular acidification that enforces the discrete nature of particles while also captur-

ing information about fluctuations in the system. We revisited the AHA2 data, which is all

taken from our previous publication [12], using a DS model that is equivalent in complexity to

our previous ODE model of acidification and report here that both models provide very simi-

lar parameter estimates, even when free proton counts are much less than one. The DS model

coupled with analytic results also shows that the noise in these experimental traces is very large

and primarily reports on the fluorescent dye rather than the true proton fluctuations. We sug-

gest conditions under which the fluctuations in the reporter dye would more closely match

those of the free proton count. Finally, the DS model was used to predict pH fluctuations in

lysosomal-sized compartments containing different numbers of proton pumps. While the DS

model shows that such compartments can achieve different mean pH values by modulating

the number of pumps recruited to their membrane, it also shows that the distribution of pH

values around these means are relatively narrow and robust to stochastic activity and Poisson-

like changes in pump number.
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Materials and methods

A discrete, stochastic model of acidification

We model the acidification of single vesicles using a system of chemical reactions following

our previous ODE work [12]. These reactions account for proton and potassium leaks, a pro-

ton pump, lumenal buffer species, and impermeant, negative Donnan particles trapped in the

lumen (Fig 1). These reactions determine the change in lumenal concentrations and the mem-

brane potential, and the corresponding ODE for the number of lumenal H+, for example, is

given by:

d
dt

NH ¼ kP|{z}
pump

þ NAðk
þ

H½H
þ�o � k�H½H

þ�Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

leak

þ NAVðk
�

B ½HBþ� � kþB ½B�½H
þ�Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
buffer reactions

; ð1Þ

where kP is the time-dependent proton pumping rate into the vesicle, V is the volume of the

vesicle (assumed spherical throughout), kþH and k�H are rate constants describing the passive

movement of protons into and out of the vesicle, respectively, k�B and kþB are rate constants for

the dissociation and association of the buffer and proton, respectively, [HB+] and [B] are the

concentrations of the protonated and free buffer, respectively, [H+]o and [H+] are the concen-

trations of protons outside and inside the vesicle, respectively, and NA is Avagadro’s number.

Throughout, the subscript o refers to an extracellular value and lumenal values do not have a

subscript. Many of these quantities are subject to further biophysical and chemical constraints.

Buffer reactions. While Eq 1 only shows a single species, our model has two explicit

buffer molecules: solution buffer molecules distributed throughout the vesicle, B1, and lipid-

bound dye molecules called pHrodo, B2. In general, detailed balance relates the forward and

reverse rates through the experimentally determined pKa value for each buffer (see Table 1) as

follows:

kþB ¼ 10pKa � k�B ð2Þ

For all simulations, the value of k�B was 0:1 1

s for both buffer species, and the forward rates then

followed from Eq 2 and are given in Table 1. The value of the reverse rate was selected such

Fig 1. Schematic representation of vesicular acidification model. (A) Cartoon representation of the model with all elements and reactions explicitly

shown. (B) Chemical equations and rate constants for each model component.

https://doi.org/10.1371/journal.pcbi.1007539.g001
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that the forward buffer rates (* 104-105 L
mol�s) would be the fastest in the simulation. The

change in protonated, NHB, and free buffer molecules, NB, for either species are then given by:

d
dt

NHB ¼ NAVðk
þ

B ½B�½H
þ� � k�B ½HBþ�Þ ð3Þ

d
dt

NB ¼ NAVðk
�

B ½HBþ� � kþB ½B�½H
þ�Þ; ð4Þ

where the constraint on the total number of buffer molecules, NHB + NB = NT, eliminates one

of the equations. [B1] is constant in all experiments, and NT = V[B1]. pHrodo lipid-dye mole-

cules are incorporated into vesicles at a mole fraction F of 1.5 to 1000, and then the vesicle

geometry defines the average number of molecules and concentration:

½B2� ¼
NT

V
¼

1

V
�

A
AL

�
F
NA

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
NT

;
ð5Þ

where AL is the area per lipid headgroup, and A is the vesicle surface area.

Membrane potential. We employ a physical model for the membrane potential [19]

determined by summing the total charge in the vesicle and dividing by the membrane capaci-

tance C:

Dc ¼
F

NAAC
ðNH þ NHB1

þ NHB2
þ NK � NAVBÞ; ð6Þ

Table 1. Model parameters.

description symbol value units

liposome radius r variable nm

liposome area A variable nm2

liposome volume V variable nm3

AHA2 pumping rate IP variable H+/s

membrane H+ permeability PH variable cm/s

AHA2 H+ permeability PAHA2 variable cm/s

external potassium permeability PK 1.1 × 10−7 cm/s

external potassium concentration [K+] 100 mM

bulk buffer concentration [B1] 10 mM

bulk buffer pKa pKa
1 6.1 –

bulk buffer forward rate kþB1
1.3 x 105 L

mol�s

pHrodo concentration [B2] see Eq 5 mM

pHrodo pKa pKa
2 5.72 –

pHrodo forward rate kþB2
5.2 x 104 L

mol�s

area per lipid head group AL 0.7 nm2

mole fraction pHrodo-to-lipid F 1.5/1000 –

Faraday’s constant F 96,485 C/mol

gas constant R 8.31 J/(K�mol)

temperature T 293 K

membrane capacitance C 10−6 F/cm2

Model parameter values were set to match the experimental parameters of the Stamou Lab’s single vesicle recordings

[12].

https://doi.org/10.1371/journal.pcbi.1007539.t001
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where N indicates numbers of specific charged molecules (free protons, protonated buffer,

protonated dye molecules, and potassium, respectively), B is the concentration of negatively

charged Donnan particles, and F is Faraday’s constant (see Table 1 for values).

Passive H+ & K+ permeability. Passive H+ and K+ membrane leaks were modeled as:

d
dt

NK ¼ NAðk
þ

K ½K
þ�o � k�K ½K

þ�Þ; ð7Þ

where this equation for K+ is equivalent to the leak term in Eq 1 with similar definitions,

and the rate constants kþX /k�X for X = K or H depend on Δψ. In the absence of a membrane

potential, the flux vanishes when the internal and external concentrations are equal leading to

kþX ðDc ¼ 0Þ ¼ k�X ðDc ¼ 0Þ ¼ k0
X . In the presence of a potential, the base rates must be modi-

fied to obey the Nernst equation and provide the correct equilibrium condition. The simplest

model for a monotonic cation that enforces reversibility is the following:

k�X
kþX
¼ e

DcF
RT ; ð8Þ

where R is the gas constant and T is temperature. We chose to split the membrane potential

dependence equally among the forward and reverse reaction rates:

k�X ðDcÞ ¼ k0
Xe
þ
DcF
2RT

kþX ðDcÞ ¼ k0
Xe
þ
DcF
2RT

ð9Þ

The membrane permeability (cm/s) is related to A (nm2) and the reaction constant, k0
X (L/s),

via the equation:

PX ¼
k0

X

A
� 1017: ð10Þ

k0
K for K+ is zero prior to valinomycin addition and afterwards is set by Eq 10 and its mem-

brane permeability (Table 1). k0
H for H+ is composed of two terms:

k0
H ¼ k0

lipid þ k0
AHA2

: ð11Þ

The first term is direct membrane mediated leak that is always present, and the second term is

proton pump dependent leaking that occurs once the pump stochastically turns off as

described previously [12]. The model parameters in Table 1, PH and PAHA2, refer to the mem-

brane permeability calculated from k0
lipid and k0

AHA2
individually using Eq 10.

Implementation of the stochastic model. The ODE-based model of vesicular acidifica-

tion summarized by Eqs 1, 4, and 7 was implemented in the biochemical reaction network

software, COPASI [20], using the time course feature. Only the internal concentrations were

allowed to vary, and the model held all extracellular concentrations fixed. To simulate a dis-

crete, stochastic (DS) process, COPASI employs a version of the classic Gillespie algorithm

called the Next Reaction Method [21]. The reaction equations, rate constants, and starting

concentrations from Fig 1 were entered into COPASI, and a trajectory of reactions and corre-

sponding reaction times were stochastically generated. After each reaction was executed, the

the membrane potential was updated according to Eq 6 as well as all affected rate constants.

Each simulation was run for 750 s, and species counts were recorded every 0.02 seconds. For

comparisons to deterministic ODE results, we simultaneously solved Eqs 1, 4, and 7 using the

ode45 stiff solver algorithm in MATLAB (The MathWorks, Natick, MA).
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Calculating pH. We calculated lumenal pH from the stochastic vesicle model results

using three methods. First, post-simulation, the instantaneous free proton count at each time

step was converted to a pH value based on the volume of the vesicle using the relation pH =

−log10([H+]), which we simply refer to as pH. Second, we time-averaged the proton count over

a time Δt, usually 0.5 s, and then took the � log
10
ð½Hþ�Þ to determine the time averaged pH

from the DS model. Third, we computed pH from the fluorescence of the pHrodo dye mole-

cules to estimate pH in a manner identical to previously published experiments [12], pHhν.

When pHrodo is protonated, it fluoresces, and a CCD camera detects the number of photons

emitted in time windows from isolated vesicles. The pH was then determined from the photon

count using a predetermined vesicle-size specific calibration curve.

We first solved the stochastic model to determine the number of protonated dye molecules

in time. Next, we estimated the average photons emitted from NHB dye molecules using the

equation:

�Nhn ¼ c � NHB2
þ b ð12Þ

where c and b are trace-dependent constants described later. Realizing that emission is sto-

chastic, we simulated the actual number emitted photons assuming they obey Poisson statis-

tics:

NhnðtÞ ¼ Pð �NhnÞ ¼ Pðc � NHB2
ðtÞ þ bÞ; ð13Þ

where P is the Poisson distribution with mean �Nhn. We determined c and b for each experi-

mental trace by using the same linear model to convert protonated dye molecules to photon

count. To solve for the two unknown parameters, we used the average experimental pH

(pHexp) and Nhν values prior to ATP addition (T1) and after maximum acidification was

reached (T2) to obtain two constraint equations:

NT1
hn ¼ c � NT1

HB2
þ b

NT2
hn ¼ c � NT2

HB2
þ b;

ð14Þ

where NHB2
was obtained from pHexp using the Henderson-Hasselbach equation:

NHB2
¼

NT

1þ 10ðpHexp� pKaÞ
; ð15Þ

where NT is the total number of dye molecules. After solving for c and b, the stochastic model

reproduced the experimental photon count time series very well using Eq 13. Finally, the

model pH in this third method is determined as follows:

pHhn ¼ pK2

a þ log 10

NT � NHB2

NHB2

 !

: ð16Þ

where importantly NHB2
is not determined here from the model, but rather from Eq 12 as

NHB2
¼ Nhn=c � b, which includes photon shot noise. Our modeling efforts not only match the

photon time series, but it also closely matches the experimental pH calculation curves in

Ref. [12].

Data fitting. We used our models to fit experimental pH measurements using the Nelder-

Mead search algorithm [22] to find the optimum parameter values that minimized the root

mean squared deviation (RMSD) between the simulated and the experimental data across the
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entire time series:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðXmodðtiÞ � XexpðtiÞÞ
2

s

; ð17Þ

where N is the number of experimental data points and Xmod/exp is the model/experimental

free proton count or pH, as described next. When computing pH directly from the free proton

count in the DS model, we compared calculated free proton values to the experimental free

proton count, which was back calculated from the experimental pH values. However, when we

computed pH from the photon count in the DS model, we compared pHhν directly to the

experimental pH using Eq 17. Finally for the ODE model, computed pH was again compared

directly to the experimental pH. We chose to use free proton count in the first case, because

pH is undefined when there are no free protons. Because the RMSD value for any given param-

eter choice varied from run-to-run, due to stochastic variation, we carried out the optimization

on the average RMSD from 10 runs: err ¼ 1=10
P10

j¼1
RMSDj. Optimum fits were determined

by varying kP, k0
lipid, k0

AHA2
, relating to the pumping rate, passive membrane permeability, and

AHA2-dependent proton leak. All other parameters listed in Table 1 were fixed. The initial

interior proton concentration was set to the experimental value and was also assumed to be in

equilibrium with the exterior pH, because ATP had not yet been added. The ratios of proton-

ated to deprotonated buffers were set based on the total buffer concentrations and known

buffer pKa values. Additionally, the radius, r, of each vesicle was measured in previous experi-

ments [12] wherein individual radii were determined by converting diffraction-limited inten-

sity spots to physical proteoliposome size [23]. These vesicle sizes were then calibrated via

cryo-EM [12, 23].

Experimentally, AHA2 H+ pumping (Ip) begins with the addition of ATP to solution and

then stochastically halts at some later time. We accordingly divided each trace into three sec-

tions: before, during, and after pumping. Ip was non-zero only in the middle section, and

PAHA2 was only non-zero after pumping due to AHA2.

Results

The model reveals discrete pH jumps not observed in experiment

We first used the stochastic model to explore the acidification of a small vesicle * 50 nm in

radius. While still larger than synaptic vesicles, such a small space (5 × 10−7 pL) poses an inter-

esting question when interpreting proton concentrations since a pH of 5 corresponds to * 3

free protons. To our knowledge, our recent work, led by the Stamou lab, represents the only

experimental study of the acidification of isolated vesicles by single transporters, which we call

Single Transporter Activity Recordings (STARs). These artificial proteoliposomes reconsti-

tuted with 1 or a few AHA2 proton pumps, verified with single molecule quenching of tagged

AHA2 [12], ranged in size from tens of nanometers to hundreds of nanometers, and they serve

as an excellent standard to compare against our discrete, stochastic model.

Fig 2 shows the time resolved trace from a 58 nm vesicle (black curve in all panels). Near

180 s, ATP is added to solution to initiate pumping of the AHA2 proton pump, at which point

the vesicle acidifies from the bathing pH of 6.5 to 5.5. Then near 500 s this transporter sponta-

neously turns off and protons leak out of the vesicle returning the intravesicular pH to the exte-

rior value. We first carried out curve fitting to obtain a set of model parameters that most

closely matches the experiment following the optimization scheme outlined in the Methods.

The orange curve in Fig 2A is a representative stochastic run of the DS model using these opti-

mized parameters. In this simulation, we are using the instantaneous number of free protons
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in the vesicle at each point in time and then converting that value to pH using the standard def-

inition of pH (orange traces). It is immediately clear that the model produces a result that is

dramatically different from the experimental trace. As expected, the model shows discrete

changes in the state of the system when 0, 1, 2, 3, or 4 free protons are present in the lumen—

pH 5.7 corresponds to 1 proton, 5.4 to 2, and so on. For a large portion of the beginning and

end of the simulation trace, the instantaneous proton count is zero, resulting in an infinite pH

value not visualized in Fig 2A. Despite the clear differences, there are similarities between the

simulation and experiment. When AHA2 starts pumping, there is a general acidification that

occurs in both traces, and when pumping stops both alkalinize. While the vesicle returns to the

extravesicular pH of 6.5, the DS model returns to having no protons on average (pH!1).

While we suspect that the DS model is an excellent representation of the true biological system,

and that it likely produces the correct instantaneous pH values, why does it not match

experiment?

In a first attempt to address this question, we accounted for the fact that the experiment

does not report on the instantaneous pH. The fluorescence emitted from acidifying vesicles

was collected over a 0.5 second window and reported every 2 seconds [12]. Thus, we time aver-

aged the free proton count from the DS model over a 0.5 second window prior to converting

to pH (pH). As can be seen in Fig 2B, this approach produces a continuous pH trace that no

longer shows discrete steps in proton count and more closely matches experiment. The alka-

line pH values correspond to fractional numbers of free protons, and they result from many

snapshots of the vesicle with no protons and a few with one. Although this method of time

averaging produced a simulated pH curve with the same mean pH values as the experimental

trace, there are pronounced differences in the magnitude of pH fluctuations between the two

curves. In the model, the fluctuations are quite large at alkaline pH levels and are suppressed as

the vesicle’s mean lumenal pH decreases. This trend is simply a consequence of the log scale of

pH measurement (i.e. while variance in the number of free protons grows at acidic pH values,

the log10 suppresses the fluctuations); however, it was puzzling that the experimental traces

showed no obvious pH dependent change in the magnitude of the fluctuations, as can be seen

in the example curve in Fig 2.

We also modeled the pH in the vesicle in a manner that exactly mimics the experimental

setup to gain deeper insight into what the experiments are telling us. As is the case with many

Fig 2. Discrete, stochastic simulations of a small vesicle. (A) The instantaneous pH from the DS model simulation (orange) plotted over an

experimental trace obtained from a 58 nm radius vesicle (black). The same experimental trace is shown in all three panels, and the times when ATP are

added and the pump stops are indicated with arrows. (B) Time averaged DS model results using a 0.5 s window to produce pH (orange). (C) pH

determined from fluorescent reporter (pHhν) calculated from the modeled photon count emitted from the pHrodo dye (orange). The inset shows the

corresponding experimental (black) and simulated (orange) photon count, Nhν, over time.

https://doi.org/10.1371/journal.pcbi.1007539.g002
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environmental reports, the fluorescence is not a direct readout of the free molecule/ion of

interest, but rather it is the result of binding of that molecule/ion to a reporter, which then

changes its fluorescent properties. Here, the reporter is the pH sensitive dye, pHrodo, which

resides in the membrane leaflet due to conjugation to a DOPE lipid. For a 58 nm radius vesicle,

there are approximately 88 pHrodo lipids in the inner leaflet. Given the pKa of 5.72 of this lipi-

dated form of pHrodo (see Ref. [12]), on average, initially 12 lipids are protonated, and this

number increases to 51 as the system acidifies. As described in the Methods, we simulated the

stochastic emission of photons from each bound pHrodo, which also increases in time (Fig 2C

inset), and we plotted the predicted lumenal pH from this signal in the main panel, which we

call pHhν. pHhν not only tracks the mean experimental pH, but also qualitatively the experi-

mental fluctuations. The two approaches for interpreting the DS model exhibit very different

fluctuations because one is based on proton count (panel B) and one is essentially based on

bound dye count (panel C), and both quantities and their variances scale very differently with

pH. Proton count changes exponentially with pH, while the bound dye count, and hence the

photon count, increases almost linearly over the experimental range of interest (Fig 2C inset).

Although the pHhν best fits the experimental results, it highlights the fact that the experimental

measurements are not directly capturing information about the free protons, but rather the

fraction of protonated pHrodo molecules. Hence, we assert that the instantaneous pH calcula-

tions determined directly from the DS model provide the best indication of the free proton

dynamics in these compartments.

Parameter estimates are model independent

Next, we wanted to apply our two methods of fitting the stochastic model to a range of STAR

data recorded from vesicles of different sizes, quantitatively compare the parameter estimates

from each approach, and importantly, compare the results to solutions derived from ODE cal-

culations. The vesicles in Fig 3 range from 75 to 197 nm in radius (a volume difference of

approximately 18×), and for each trace, we fit the DS and ODE models to the data and identi-

fied the optimal AHA2 H+ pump rate (IP), membrane proton permeability (PH), and the

AHA2-dependent proton permeability (PAHA2) that occurs after the pump stops (Table 2).

Since the DS model is stochastic, any individual simulation may provide a poor match to a

given STAR even if the parameter values are optimal. Therefore, for each point in parameter

space, we ran the stochastic models 10 times and averaged the goodness of fit from each run to

provide a representative score, which was then optimized using a Nelder-Mead search algo-

rithm [24].

Model fits (orange curves) are reported in separate columns superposed on the correspond-

ing experimental trace (black). The ODE model (Fig 3 left column) produces piece-wise

smooth curves that overlay well with the experimental data, throughout the trace; however, as

discussed earlier, the ODE model does not reproduce the fluctuations in the trace. The greatest

deviations between the fit and the data occur in traces 2 and 3 around 150-175 seconds. At

these points in time, the experimental trace changes rapidly, either due to a stochastic fluctua-

tion or to the pump rate changing in a manner not encoded in the model. For the DS model

(middle column), pH produces discrete pH jumps, as discussed earlier, not observed in the

data recorded from the small 75 nm radius vesicle (trace 1), but the discrete nature is obscured

in the larger vesicles (traces 2-4) because they contain many more protons. Incidentally, the

ODE model predicts a free proton concentration less than 1 for most of trace 1. As the vesicle

acidifies in the DS method for traces 2-4, the noise decreases for reasons discussed previously,

and this is not observed in the data. Lastly, interpreting pH changes in the DS model by explic-

itly modeling the emitted photons (right column) produces the closest fit to the experimental
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Fig 3. Liposome acidification dynamics using the ODE and DS models. ODE model fits along with representative simulations from the DS model

with pH interpreted from free proton counts or photon counts (indicated by hν) for the four experimental traces in Table 2. Each row is a different

experimental trace plotted in black, and all simulations are orange. The first, second, and third columns contain the ODE, DS model, and DS model

using photon count results, respectively. In the last column, the calculated pH is pHhν. All parameter values can be found in Table 2.

https://doi.org/10.1371/journal.pcbi.1007539.g003

Table 2. Parameter estimates for the DS and ODE models.

trace r (nm) method IP (H+/s) PH (cm/s) PAHA2 (cm/s)

1 75 DS 117 31 × 10-5 8.5 × 10-5

DS—hν 122 29 × 10-5 10 × 10-5

ODE 119 28 × 10-5 7.1 × 10-5

2 145 DS 471 3.0 × 10-5 140 × 10-5

DS—hν 482 4.0 × 10-5 66 × 10-5

ODE 448 3.9 × 10-5 65 × 10-5

3 145 DS 286 1.1 × 10-5 39 × 10-5

DS—hν 280 1.3 × 10-5 153 × 10-5

ODE 252 1.3 × 10-5 46 × 10-5

4 197 DS 475 19 × 10-5 521 × 10-5

DS—hν 436 20 × 10-5 648 × 10-5

ODE 425 19 × 10-5 514 × 10-5

https://doi.org/10.1371/journal.pcbi.1007539.t002
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data for the small vesicle (trace 1), and as discussed before, it exhibits similar noise at both

high and low pH. However, the magnitude of the fluctuations for the larger vesicles is smaller

than what is observed experimentally, which may arise from other environmental sources not

included in our model. As we show in Fig A in S1 File, the membrane potential is predicted to

be negligible for the DS model due to sufficient clamping by potassium via valinomycin.

Importantly, despite qualitative differences in the ODE and DS model, they both predict

very similar parameter estimates (Table 2). Both DS methods predicted pump values (IP)

within 10% of the ODE value, while the passive membrane permeability values (PH) are all

between 0 and 30%. The ODE results for PH match the DS model interpreted from photon

counts better, but we are unsure if this is true or the result of analyzing a small number of

traces. The greatest variability for the DS method predictions is in the estimated PAHA2 values,

which differ for the two DS methods by a factor of 2-4 for traces 2 and 3. We note that esti-

mates of this quantity, which represents the leak of protons through the transporter once it

stops pumping, are prone to error. Since the protons leave the vesicle so quickly over a short

period of time, as can be seen near 500 s in Fig 2, the value is poorly constrained from above.

That is, increasing PAHA2 above a critical value produces nearly identical looking fits with simi-

lar RMSD values. Thus, we do not think that these differences are crucial. Rather, the closeness

in all predicted values across all models and methods suggests that it is not essential to model

the fluorescent response of the dye molecules to capture the mean behavior of the system nor

does one need to model the discrete nature of the proton movement, as we elaborate upon

next.

One reason why the mean parameter estimates for the ODE and DS models are close is

because the ODE model can be interpreted as an average of multiple DS model simulations,

as we show in Fig 4. Here, we used the parameter estimates for trace 2 and ran the DS

Fig 4. ODE model fit is average of many DS simulations. The ODE and DS model fits for Trace 2 from Table 2,

r = 145 nm, is displayed. An average of 10 and 100 DS simulations with the DS method predicted parameter values is

displayed as well. As the number of averaged DS simulation increases, the ODE model fit is approached.

https://doi.org/10.1371/journal.pcbi.1007539.g004
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model one time (blue), averaged over 10 runs (red), or averaged over 100 runs (green)

and plot the resulting pH. As more traces are averaged, the fluctuations are suppressed, and

the final curve is indistinguishable from the smooth trace produced from the ODE model

(black dash). Evidently, the ODE model accurately describes the mean lumenal pH of the

liposome over time. The similarity between ODE and DS model predictions suggests that

the deterministic, continuum model is detailed enough to provide parameter estimates, even

for very small vesicles with large pH fluctuations, and proton counts that are at times less

than one.

Finally, we carried out sensitivity analysis on the ODE model for trace 2 to determine

which parameters most greatly impact the dynamics and steady state behavior. Given the simi-

larity between mean parameter estimates for both DS and ODE models, we expect that these

results apply equally to both. As with several of our previous pH regulation studies, the pump-

ing rate, proton permeability, and surface area all impact the steady state pH the greatest, while

the properties of the primary buffer, AHA2 pumping rate, and volume impact the rate of acidi-

fication (Table A in S1 File).

Vesicle radius and mean pH are the greatest determinants of pH fluctuations

A central question in intracellular pH regulation is how the pH setpoint is established in an

organelle. A related question is, once set, are vesicles prone to large pH fluctuations that would

change the proton motive force (PMF) across the membrane influencing H+-dependent trans-

porters, ion channels, and lumenal pH-dependent enzymes? Since the DS model captures fluc-

tuations, we wanted to address these points computationally by identifying the parameters that

most greatly influence the fluctuations in the free proton count, and correspondingly the pH.

Our analysis revealed that vesicle radius and mean lumenal pH exert the greatest impact on

the number of total free protons in the system, and hence the H+ fluctuations. In Fig 5A, we

carried out a series of calculations in which we varied the radius of an idealized liposome from

70 to 270 nm with the external pH constant at 5.5. There were no proton pumps, only a passive

H+ permeability, and the mean lumenal pH mirrors the external value for all sizes. We see as

the radius of the vesicle increases the standard deviation of free proton count, σ(NH), also

increases (Fig 5A). Next, we kept the vesicle radius constant at 150 nm, but varied the bath pH

from 4.5 to 6.3, and as the lumen acidifies σ(NH) increases (Fig 5B). If the free proton count

obeys Poisson statistics, we would expect the standard deviation to scale like the square root of

the number of protons. For panel A, as the vesicle radius increases at fixed pH, the number of

free protons is proportional to the vesicle volume, and we would expect s NHð Þ �
ffiffiffiffi
r3
p
¼ r3

2, as

it does (dashed curve). Meanwhile, the vesicle size is fixed as the pH changes so the number of

free protons scales like 10−pH, and the noise scales like
ffiffiffiffiffiffiffiffiffiffiffi
10� pH
p

as expected (dashed curve in

Fig 5B). In general, the theory is an excellent match to the numerical results (points), support-

ing the claim that the H+ fluctuations obey Poisson statistics at steady state in our model. In

panel Fig 5C, this correspondence is explicitly shown for a single dynamic trace of H+ from the

DS model at pH 5.5 and r = 150 nm (diamond in Fig 5A and 5B). Binning the counts on the

right reveals a histogram with values from 0 to 8 that is again well fit by a Poisson distribution

(solid line).

Experimentally, it is more useful to examine the fluctuations in pH units than proton

count, which we see scales very differently with radius and mean pH in panels Fig 5D and 5E,

respectively. Standard deviation in pH decreases as vesicle radius increases, and it increases as

mean pH increases. These trends are captured by the dashed curves in panels D and E, which
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follow from the transformation to pH:

sðpHÞ ¼ sðNHÞ �
@pH
@NH

�
�
�
�

�
�
�
� ¼ sðNHÞ �

� 1

lnð10Þ � NH

�
�
�
�

�
�
�
� /

r� 3
2

10þpH=2

8
<

:
; ð18Þ

where we note that NH scales like r3 or 10−pH, and we recall how σ(NH) varies with r and pH

from the last paragraph. Thus, fluctuations in pH are suppressed in larger, more acidic

vesicles—the opposite of what is observed for proton count. Finally, we wanted to determine if

active pumping changed the Poisson-like characteristic of the noise, so we carried out fluctua-

tion analysis at steady state for an acidic vesicle with active pumping. For different sized vesi-

cles the proton pump rate was varied to achieve different steady state pH values, and the

resulting standard deviation of pH was recorded (panel F). σ(pH) matches the values in panels

D and E (diamonds), suggesting that the process of proton pumping—in our simple model—

does not influence pH fluctuations. Furthermore, we explicitly show for one of the DS simula-

tions with pumping that at the acidified steady state pH, the distribution of free proton counts

is still well fit by a Poisson distribution (panel F inset).

Fluorescent reporters cannot reveal the true pH fluctuations in a

compartment

Important information regarding the nature of complex physical systems can often be

extracted from the natural fluctuations. However, the proton noise analysis presented in Fig 5

Fig 5. Effects of vesicle radius and steady state pH on H+ and pH fluctuations as predicted from our DS model. (A&B) The standard deviation in the

free proton count of DS model simulations (σ(NH)) as a function of vesicle radius with the lumenal/bath pH set to 5.5 (panel A) or as as a function of

lumenal/bath pH with the radius fixed at 150 nm (panel B). (C) The instantaneous free proton count over time and corresponding count histogram for

the common DS model simulation to panels A-D (diamonds) with r = 150 nm and pH = 5.5. (D&E) The standard deviation in pH of DS model

simulations (σ(pH)) as a function of vesicle radius with the lumenal/bath pH set to 5.5 (panel D) or as as a function of lumenal/bath pH with the radius

fixed at 150 nm (panel E). Dashed lines in A, B, D, and E scale as expected based on free proton count and pH scaling with volume and pH as described

in the main text. (F) Standard deviation in steady state pH as a function of lumenal pH for vesicles undergoing active proton pumping. The proton pump

rate was adjusted to achieve different internal pH values, each curve corresponds to a different size vesicle (r = 100, 150, 200, and 250 nm). The inset is a

histogram of free proton counts for the r = 150 nm, pH = 5.45 data point (diamond). For all panels, the simulations of the DS model were run for 750 s at

equilibrium with the bath pH, with no active pumping (except panel F), and PH = 4.6 × 10−5 cm/s. All other parameters can be found in Table 1.

https://doi.org/10.1371/journal.pcbi.1007539.g005

Protons in small spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007539 December 23, 2019 14 / 21

https://doi.org/10.1371/journal.pcbi.1007539.g005
https://doi.org/10.1371/journal.pcbi.1007539


is based on a very simple model, and we directly analyzed the noise in the true proton count,

which cannot be done experimentally. If real pH regulatory systems harbor more interesting

feed back systems that deviate from Poissonian statistics, we would have to extract this from a

fluorescent reporter, as is often done in single molecule experiments. Thus, we wanted to

determine if the true fluctuations in the free proton count could be related to the fluctuations

in the fluorescent reporter. The pH-dependent fluctuations in pH reported by the dye are com-

plex, and we carried out analytic analysis to better understand it. The noise in photon counts

emitted by the dye arises from fluctuations in the protonated number of dye molecules, which

follows from binomial statistics as well as photon shot noise, which we assumed to be Poisson

distributed in our DS model. As derived in the supporting information in S1 File, applying the

transformation in Eq 18, we arrive at the expression for the standard deviation in pHhν

expected from the model:

sðpHhnÞ ¼
1

lnð10Þf ð1 � f Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

j
@pH
@f j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 � f Þ þ f =l

Ndye

s

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
sðf Þ

;
ð19Þ

where f ¼ ½B2�=½BT� ¼ 1=ð1þ 10pH� pK2
aÞ is the fraction of protonated dye molecules, λ is the

mean photon production count per protonated dye molecule per collection time, and Ndye is

the total number of buffer molecules. While this mathematical expression fits our simulated

data very well, it also makes it clear that there is no relationship between the fluctuations in the

free proton count and the experimental fluctuations in the measured pH—the former obeys

Poisson statistics and the later is dominated by binomial statistics of the bound dye (Fig B in

S1 File). Additionally, the covariance between the number of free protons and the number of

bound dye molecules is very weak.

Next, we calculated the noise in the STARs to attempt to validate Eq 19. To do this, we car-

ried out a denoising procedure to extract the fluctuations around the pre-valinomycin bath

pH, and around steady-state acidified regions from over 100 single vesicle, single transporter

traces. First, we identified by visual inspection a set of vesicle traces which remain acidified for

an extended period. Next, we used tvdip.m [25], a total variation denoising [26] routine, to

aid in selecting a steady-state time window from the most acidified region of each trace. We

rejected traces, or narrowed time windows, which contain pH spikes consistent with transient

pump off states. Finally we selected the subset of traces which acidify to 5.71 < pH< 5.81, as

this 0.1 pH window contained more traces (15) than any other 0.1 pH window. We then calcu-

lated the Fano factor [27] (the variance divided by the mean) of the raw photon count for these

15 traces both in the steady-state acidified region, and also at pH 6.5 using the first 84 data

points from before valinomycin addition.

For a Poisson processes, the Fano factor is 1 as the variance equals the mean; however, the

fluctuations in raw photon count are super-Poissonian with mean Fano factor values 15—35

(Fig C in S1 File). Additionally, this noise is nearly constant between the two pH values. We

calculated an expected Fano factor of 20 (see S1 File), in good agreement with the experimental

distributions and confirming our prediction that the experimental noise is dominated by the

dye and not related to the true pH.

Time-dependent pH fluctuations in an acidic compartment

For cellular compartments, there are additional considerations that we have not yet included

that could cause deviations from the desired pH setpoint, namely the total protein copy num-

ber and the realization that pumps—like channels—cycle between on and off states [12]. If

Protons in small spaces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007539 December 23, 2019 15 / 21

https://doi.org/10.1371/journal.pcbi.1007539


during organelle biogenesis a compartment acquires too many or too few proton pumps (or

some other critical protein), the pump-to-leak ratio would be skewed pushing the lumen more

or less acidic. Likewise, if pumps turn on and off stochastically, like AHA2, then the compart-

ment may experience large fluctuations in time. For eukaryotic cells, the V-ATPase is responsi-

ble for acidification [28], and while it is not known if these pumps normally cycle on and off, it

is known that they respond to cytoplasmic queues such as low glucose [29], and it is reasonable

to assume that they do stochastically inactivate.

Here, we simulated a 340 nm radius vesicle, which is the typical size of a lysosome [17].

Starting at a pH 6, we carried out 6 DS model simulations each with a different number of total

V-ATPases ranging from 20 to 640 total pumps (Fig 6). All pumps have the same proton

pump rate of 100 H+/s [30], but they can each independently activate and inactivate stochasti-

cally. For AHA2, the mean dwell time in the on state is 273 seconds, and the off time is compa-

rable under high ATP concentrations [12]. Based on this information, we modeled V-ATPases

cycling between active and inactive states by pulling from an exponential distribution with a

mean lifetime of 273 seconds for each pump. We were thus able to simulate a population of

proton pumps randomly turning on and off, and explore how the steady state pH was

influenced.

As expected, vesicles with fewer active pumps did not acidify as much as vesicles with far

more active pumps (Fig 6A). Initially we thought that as the total pump number (N)

increased the vesicle would exhibit increasingly smaller noise in the steady state pH because

the fluctuations in the active pump number scale like
ffiffiffiffi
N
p

, while the mean number of active

pumps scales like N. To quantify these fluctuations, we binned the steady state pH values pro-

duced by the DS model in panel B. While it is true that the vesicle with 640 pumps exhibits

the smallest pH fluctuations, the width is relatively uniform across the entire range of pH set-

points with a total spread of about 0.5 units at neutral values and 0.25 units at acidic values

(Fig 6B), which is consistent, but larger, than the more idealized results from Fig 5F. Thus,

the other sources of noise in the system, particularly fluctuations in the number of active

pumps, contribute to a greater spread in pH. Lastly, we wanted to explore one mechanism of

Fig 6. Vesicle pH fluctuations are constant over a range of pH values. (A) DS simulation of a lysosome sized vesicle (r = 340 nm), with constant

passive membrane permeability PH = 4.6 × 10−5 cm/s, and different numbers of proton pumps N = 40, 160, and 640. The pumps stochastically cycle

between active and inactive pumping states with a mean dwell time of 273 s in each state and a constant pumping rate of IP = 100 H+/s when active. The

inset shows the total active pump population in time. In each simulation, the extracellular pH and the starting initial pH are 6.0. (B) Distribution of pH

values at steady state for the three simulations in panel A plus three more simulations for N = 20, 80, and 320. A normal curve with mean and standard

deviation equal to that of each distribution is plotted overtop of each histogram. The pH was computed from the instantaneous proton count generated

by the DS model in all panels. (C) Distribution of steady state pH values for a populations of vesicles, as in panel A, with pump numbers pulled from a

Poission distribution with mean pump number N = 640. The five colors, right to left, correspond to the pH values produced by vesicles with the 5th

(red), 25th (yellow), 50th (green), 75th (cyan), and 95th (blue) percentile of the distribution, scaled by their respective probability.

https://doi.org/10.1371/journal.pcbi.1007539.g006
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pH regulation in which there is no active sorting of proton pumps during lysosomal matura-

tion, and N is simply equal to the compartment surface area times the pump density. In this

case, the expected number of pumps will be Poisson distributed with a mean N. In order to

estimate how an entire ensemble of vesicles would behave, we carried out 5 simulations of a

340 nm radius vesicle with 599, 623, 640, 657, and 682 proton pumps corresponding to 5th,

25th, 50th, 75th, and 95th percentile of a Poisson distribution with mean number of N = 640

pumps, respectively. We then plotted the frequency of observed pH values, as in panel B,

from each simulation scaled by the probability of observing that number (Fig 6C). As

expected, the spread in values is larger than the spread observed from N = 640 alone, but the

width is still very small on the order of 0.1 pH units.

Discussion

The process of vesicular acidification is one that is biologically essential, but yet still not

completely understood. Mathematical models have been useful in interpreting experiments to

help understand how different organelles achieve different pH values. The success of past ODE

models in particular, in addition to the limitations of these models, motivated us to develop

the discrete, stochastic (DS) model of vesicular acidification presented here. The DS model

enforces the discrete nature of particles within cellular compartments and describes random

fluctuations of pH in cellular compartments—two features that are absent in ODE models. We

utilized the DS model to estimate the AHA2 proton pump rate and liposome H+ membrane

permeability from experimental pH recordings of isolated vesicles (STARs) from the Stamou

Lab. One of the most surprising and important results of our present study is that DS and

ODE models provide quantitatively similar parameter estimates (Table 2), suggesting that

ODE models are sufficient for describing intracellular ion regulation as long as only mean val-

ues are needed and not information regarding the fluctuations.

Measurements of protein and RNA variability have been used to identify unregulated

housekeeping genes from Poisson distributed copy numbers [31], to understand how transla-

tional efficiency controls noise [32], to reveal how noise can give rise to population variability

[33], and to identify how HIV employs a positive feedback loop to control latency [34]. Here,

we made an analogy between protein/RNA copy number and proton counts in an attempt to

understand the noise in acidic compartments. Unlike many single molecule experiments, the

reporter is not the actual tagged molecule of interest, but rather it is related to the number of

proton-bound dye molecules. Another difference is that the molecules of interest in gene regu-

latory network studies are unbounded since the cell can essentially make an unlimited number

of molecules, while here the number of reporter molecules is fixed, which means that the

expected noise from the reporter is binomial, not Poissonian, and ion fluctuations are not nec-

essarily reflected in fluctuations in the number of bound dye molecules. Therefore, it follows

that the fluctuations in pH determined from an experimental trace cannot be related back to

the true pH fluctuations in the vesicle, because the experimental noise is dominated by fluctua-

tions in the bound dye molecules as predicted by Eq 19, which is consistent with experiment

(Fig B in S1 File). We also expect that instrumental noise, i.e. from the camera and other

sources, will have a small but non-negligible contribution to the fluctuations in pH measure-

ments as well, and if this noise is Poissonian with respect to the incident photon count, it will

only be about 3-10% of the total noise. One direct consequence of this realization concerning

the fluctuations in the dye is that we cannot tell the true range of pH values in individual vesi-

cles if these excursions are rather short lived, which may impact our understanding of the

range of possible cellular reactions that can take place in a given compartment if its mean pH

is shifted away from a value needed for catalysis.
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Thus, simulation may be one of the best ways to assess the true range of pH fluctuations in

isolated compartments. Nonetheless, fluorescent reporters do predict the mean pH in the com-

partment, and when averaged over times that are sufficiently long compared to the fastest pro-

ton dynamics (e.g. hopping on and off of buffer molecules), experimental changes in mean pH

are valid and interpretable in terms of our ODE and DS models. In our simple system, the vari-

ance in the pH decreases with vesicle size and mean pH (Fig 5D and 5E), but this trend is less

pronounced when multiple proton pumps are present and randomly activated and inactivated.

The stochastic switching between on and off states produces single vesicle pH distributions

that have similar variance across a pH range from 4.5-5.6 (Fig 6B). We even considered a pop-

ulation of lysosome-sized organelles of fixed radius whose pump numbers were random, but

proportional to the surface area, and the pH spread in this ensemble was only about twice the

spread observed for a single vesicle (640 pump data in Fig 6B compared to Fig 6C). Thus,

based on our initial work here, the relatively large size of the lysosome aids in suppressing

noise from stochastic elements in the environment, so that it can achieve an acidic pH with a

tight distribution.

Now that we have a better understanding of pH fluctuations in a simplified system, we

intend to build more realistic DS models based on our previous ODE studies of endosomes

[15] and lysosomes [17] with a particular interest in exploring how fluctuations in pH are

influenced by specific channels, transporters, and other molecules localized to each compart-

ment. We will also construct models of synaptic vesicles, which we expect to exhibit large vari-

ations in pH given their small size. As stated earlier, there is little-to-no experimental evidence

for fluctuations or steady state distributions of pH in different organelles, and the biological

significance of these variations, if they do exist, is scarce. That said, subtle changes in mean pH

can have a drastic impact on physiology, as exemplified by the recent finding that ClC-7 gain-

of-function mutations that results in lysosomal hyperacidifciation by only 0.2 units are associ-

ated with delayed myelination, hypopigmentation, and several other adverse effects [35].

Based on examples like this, we expect that compartment-to-compartment variability coupled

with ionic fluctuations in time will emerge as important determinants in the homeostatic regu-

lation of key cellular processes, and it will only be a matter of time for the biochemical tools

and experiments to mature to the point where these phenomena can be measured and brought

to light.

Supporting information

S1 File. Supporting information. Document containing a figure with simulated voltage data

corresponding to Fig 3, a mathematical treatment of the fluctuations with two figures, and

ODE-based sensitivity analysis with a table.

(PDF)

S2 File. Experimental pH in Fig 2. Experimental pH time series data (in comma separated val-

ues format) in Fig 2.

(CSV)

S3 File. Experimental pH in Fig 3. Experimental pH time series data (in comma separated val-

ues format) where column 0 is time in seconds and columns 1 through 4 are the pH traces 1

through 4 in Fig 3.

(CSV)

S1 Model. COPASI model. The discrete, stochastic model created with COPASI. The file for-

mat is XML, and it can be opened and run with COPASI [20]. Parameters such as liposome

radius, AHA2 pumping rate, pump on and off time, and membrane H+ permeability must be
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set before running the model (Model > Biochemical > Global Quantities). The model is run

by selecting the Time Course feature under Tasks.

(CPS)

S2 Model. MATLAB ODE model. ODE model of vesicle adicification due to single molecule

proton pumping. Description of the inputs can be found in the code. As an example, to repro-

duce ODE trace #2 from Fig 3, set PH = 3.9; IP = 488; PAHA2 = 65; ph0 = 6.5; radius = 145;

pka2 = 6.15; on = 180; off = 506; tfinal = 750; in Matlab (from Table 2), and then run: [t, ph] =

S2_Model([PH, IP, PAHA2], on, off, tfinal, ph0, radius, pka2); plot(t, ph).

(M)
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