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Substrate-bound outward-open structure of a Na+-
coupled sialic acid symporter reveals a new Na+

site
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Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external

coating to evade immune detection. As such, bacteria that colonise sialylated environments

deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a

substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic

acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium

solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular

substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex

with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the con-

served Na2 site, while the second Na+ binds to a new position, termed Na3, which is

conserved in many SSS family members. Functional and molecular dynamics studies validate

the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic

acid transport.
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Many pathogenic and opportunistic bacteria have
evolved the ability to scavenge and metabolise sialic
acids1,2—a large family of nine-carbon acidic mono-

saccharides prevalent in mucus rich environments3. In mammals,
sialic acids are primarily found at the terminal end of
cell surface glycoconjugates, where they mediate a diverse array of
biological functions1,2,4,5. To facilitate the import of scavenged
sialic acids, bacteria that colonise sialylated environments
deploy specific transporters, including those from the ATP-
binding cassette (ABC)6, tripartite ATP-independent periplasmic
(TRAP)7,8, major facilitator superfamily (MFS)9 and sodium
solute symporter (SSS)10 transporter families (reviewed by North
et al.11). Once imported into the cytoplasm, bacteria utilise host-
derived sialic acids either for molecular mimicry, where sialic acid
is incorporated into their surface glycoconjugates, or use sialic
acids as sources of carbon, nitrogen and energy1,12,13. Despite a
growing understanding of the catalytic steps involved in the
cleavage of sialic acids from the host cell surface and subsequent
cytoplasmic processing2,3, little is known about the molecular
determinants of import. Disruption of the genes encoding sialic
acid transporters impairs outgrowth of Salmonella enterica
serovar Typhimurium and Clostridium difficile during post-
antibiotic expansion14 and of Escherichia coli during intestinal
inflammation15.

The uropathogen, Proteus mirabilis, catabolises host-derived
sialic acids as a source of energy; the genes required for the
transport and degradation of sialic acids are encoded within the
nan operon10. The sialic acid transporter of P. mirabilis (SiaT) is a
secondary active transporter of the SSS family10, which use the
Na+ electrochemical gradients as the driving force for the uptake
of extracellular substrates.

The first structural representative of the SSS family is the
sodium galactose transporter from Vibrio parahaemolyticus
(vSGLT)16. The vSGLT structure consists of 14 transmembrane
(Tm) helices, where the substrate and Na+ binding sites are
located centrally within two five-helix inverted repeats, known as
the LeuT-like fold. This fold is shared among many sodium-
dependent symporters, which operate through the alternating
access mechanism16–19.

The number of sodium binding sites for transporters that
adopt the LeuT fold varies. LeuT20 and the Drosophila melano-
gaster dopamine transporter (dDAT)21 possess two sodium
binding sites (Na1 and Na2), where the Na+ of Na1 directly
coordinates the substrate in LeuT. The betaine symporter
(BetP)22,23 has the conserved Na2 binding site and a putative
Na1´ binding site, which is distinct from the Na1 site in LeuT and
dDAT. The structures of vSGLT16 and the benzyl-hydantoin
transporter (Mhp1)24 identified a single conserved binding site
(Na2). The Na+/substrate stoichiometry differs within SSS family
members. For vSGLT16,25, human sodium glucose transporter 2
(hSGLT2)26 and Na+/proline transporter (PutP)27, the stoichio-
metry is 1:1, while for hSGLT126 and Na+/I− transporter (NIS)28,
it is 2:1.

Here we report the high-resolution (1.95 Å) substrate-bound
outward-open structure and a functional and biophysical char-
acterisation of SiaT. The structure is in complex with the sialic
acid N-acetylneuraminic acid (Neu5Ac) and two Na+ ions. One
Na+ binds to the conserved Na2 site, whereas the second Na+

binds a new position that we term Na3. Our results inform how
secondary active transporters harness additional energy from ion
gradients by changing their stoichiometry, thus it might be pos-
sible to pharmacologically exploit differences in this mechanism
between SSS family members and other transporters with the
LeuT fold.

Results
Overall structure and the sialic acid binding site. To gain
insight into sialic acid uptake, we determined the structure of
SiaT from P. mirabilis (Fig. 1a, Table 1, Supplementary Fig. 1 and
Supplementary Movie 1). Homologues of SiaT are found in a
wide range of pathogenic bacteria including Streptococcus pneu-
moniae, S. enterica, Staphylococcus aureus and C. difficile (Sup-
plementary Table 1). SiaT comprises 13 transmembrane helices
(Tm0 and Tm1-Tm12) with the N- and C-termini facing the
periplasmic and cytoplasmic spaces, respectively. The core
structural fold is formed by two inverted repeats of five trans-
membrane helices (Tm1-Tm5 and Tm6-Tm10), consistent with
the LeuT-fold17 (Supplementary Fig. 1d).

The sialic acid binding site is near the centre of the protein,
lined by residues from four helices (Tm1-Tm3 and Tm6)
(Fig. 1b). The electron density in this site corresponds to Neu5Ac
in its β-anomeric form (Fig. 1c) as seen in the Haemophilus
influenzae periplasmic binding protein (SiaP) of the sialic acid
TRAP system29. This is consistent with the discovery that bacteria
that scavenge host-derived α-sialic acids from sialoconjugates,
possess a mutarotase that catalyse the conversion to the more
thermodynamically stable β-sialic acid anomer30. Tm1 and Tm6
adopt a distorted helical structure within the membrane bilayer at
the point of contact with the substrate, which has implications for
how binding drives the alternating-access mechanism16–19.

Eight residues and seven water molecules coordinate Neu5Ac
(Fig. 1b, d). Thr58, Ser60 and Thr63 (Tm1) are involved in both
side and main chain hydrogen bonding to Neu5Ac. The
negatively charged carboxylate group of Neu5Ac forms hydrogen
bonds to the hydroxyl and amine groups of Ser60 and Thr63 and
a salt bridge with the guanidinium of Arg135 (Tm3). The
presence of a basic residue in the sugar-binding pocket has been
observed previously and is a common feature of sugar-binding
proteins16. A conserved arginine in the sialic acid binding site of
SiaP is essential for high affinity substrate recognition by the sialic
acid TRAP transporter31. In sialidases and siglecs, arginine
residues often interact with the carboxylate group of sialic
acids32,33. The hydroxyl groups of the glycerol tail form hydrogen
bonds with the side chain residues of Gln82 (Tm2) and Thr58
(Tm1). The acetyl amino moiety of the Neu5Ac methyl group is
positioned in a region with a neutral electrostatic surface created
by residues Phe78 (Tm2), Gly81 (Tm2) and Phe243 (Tm6). This
is a common feature observed among interactions between
viruses and sialic acid coated glycan molecules34,35, as well as in
otherwise polar active sites of proteins and enzymes that use
Neu5Ac as a substrate29,36. A hydration layer lies between
Neu5Ac and Tm5-Tm6 with several hydrogen bonds to water
molecules or water-mediated interactions with the side chain
residues of Gln82 (Tm2), Asn247 (Tm6), Gln250 (Tm6) and the
main chain of Phe78 (Tm2).

To demonstrate sialic acid transport by SiaT, we first showed
that SiaT rescues growth on Neu5Ac of an E. coli strain that lacks
the endogenous NanT sialic acid transporter (ΔnanT) (Fig. 2a).
Next, we reconstituted SiaT into proteoliposomes and measured
time- and concentration-dependent uptake of [3H]Neu5Ac
(Fig. 2b, c). This resulted in a maximal transport activity of
1800 nmol/mg protein (0.4 nmol), a KM

Neu5Ac of 16 ± 4 µM and a
Vmax of 187 ± 30 nmol/mg protein/min. In the absence of external
Na+, the rate was reduced by 78%, similar to the value recorded
with external K+. Five mutant transporters (Thr58Ala, Ser60Ala,
Thr63Ala, Gln82Asp and Arg135Glu) were designed to disrupt
substrate binding and all except Thr58Ala abolish transport
(Fig. 2d), confirming their role in Neu5Ac binding. Thr58Ala
exhibited twice the uptake rate of wild-type protein, and since
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Thr58 binds the anomeric hydroxyl of Neu5Ac, it may be
involved in anomeric specificity. Thr58 is the least conserved
substrate-binding residue (Fig. 3).

We confirmed Neu5Ac binding to SiaT using microscale
thermophoresis (MST) (Kd

Neu5Ac= 58 ± 1 µM) (Fig. 2e) and
isothermal titration calorimetry (ITC) (Kd

Neu5Ac= 50 ± 4 µM)
(Fig. 2f).

That the Kd
Neu5Ac is larger than the KM

Neu5Ac may be due to
the presence of n-dodecyl-β-D-maltoside (DDM) detergent
during the MST and ITC experiments37.

SiaT also binds N-glycolylneuraminic acid (Neu5Gc) and
ketodeoxynonulosonic acid (KDN) (Fig. 2g) as determined by
MST. The Kd

Neu5Gc is 85 ± 2 µM (Fig. 2h), which is comparable
to Neu5Ac binding, while KDN binding was significantly weaker
(Kd > 10mM) (Fig. 2i), demonstrating that SiaT binds different

sialic acid substrates. Interestingly, SiaT has the highest affinity
for Neu5Ac and Neu5Gc, which commonly occupy the terminal
non-reducing position of mammalian cell surface
glycoconjugates38.

The sodium binding sites. We modelled two sodium ions into
the SiaT structure (Fig. 4a). One ion occupies the conserved
Na2 site, which is located between Tm1 and Tm8 at a prominent
kink in Tm119. The second Na+ in SiaT occupies a unique
position, which we term Na3. It is close to Na2 but is not in
contact with the transported substrate nor close to either the Na1
or Na1´ sites (Fig. 5).

The Na2-binding site is ~7 Å from the substrate-binding site at
the intersection between Tm1 and Tm8. The Na+ is coordinated
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Fig. 1 Overall architecture and the sialic acid binding site of SiaT. a Side-view of SiaT in the membrane plane. Transmembrane helices that coordinate with
Neu5Ac and Na+ ions are depicted in colour, while the remaining helices are coloured in white. Neu5Ac is shown as grey spheres coloured by atom type
and Na+ ions are shown as blue spheres. b Neu5Ac forms hydrogen bonds with Thr58 (Tm1), Thr63 (Tm1), Ser60 (Tm1) and Gln82 (Tm2) and a salt
bridge with Arg135 (Tm3). Neu5Ac also forms water-mediated hydrogen bonds with Gln82 (Tm2), Asn247 (Tm6), Gln250 (Tm6) and Phe78 (Tm2). c
Omit maps for Neu5Ac generated by removing respective ligands from the X-ray structure followed by refinement. The 2Fo− Fc electron density map is
contoured at lσ (blue), the Fo− Fc map is contoured at 3σ (green) and −3σ (red). d The SiaT–Neu5Ac interaction network represented as a Ligplot+

diagram. Hydrogen bonds (dashed lines), hydrophobic contacts (arcs with spokes) and interacting water molecules (yellow) are shown
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by the carbonyl oxygen atoms of Ala56 and Leu59 (unwound
segment of Tm1), the hydroxyl groups of Ser342 and Ser343
(Tm8), and the main-chain carbonyl oxygen of Ala339 (Tm8)
(Fig. 4a, b). We demonstrated the importance of Na2 by mutating
Ser342 or Ser343 to Ala, whereby both mutants lost transport
activity (Fig. 4c). Na3 is 6.5 Å from Na2, towards the cytoplasm,
and ~14 Å from the substrate binding site. At this position, the
Na+ is coordinated by the main-chain carbonyl group of Ser342
(Tm8), the hydroxyl groups of Ser345 and Ser346 (Tm8), and by
the carboxyl group of Asp182 (Tm5) (Fig. 4a, b). To explore the
functional importance of Na3, we separately mutated Ser345,
Ser346 and Asp182 to Ala. Asp182Ala abolishes Neu5Ac uptake,
while Ser345Ala showed reduced uptake and Ser346Ala had
slightly increased uptake (Fig. 4c). While all mutations made at
the Na2 site abolish transport, the Na3 site is more nuanced,
suggesting that it plays a modulatory role in the transport process.
This is not surprising since many LeuT family members have only
a single Na2 site, suggesting that transport is still possible if Na2
is not disturbed. Interestingly, all substrate uptake assays failed to
show transport unless K+ was added in the presence of the
passive carrier valinomycin to act as a counter ion. When
gradients were imposed to create an inside negative membrane
potential, transport activity was significantly stimulated, strongly
suggesting that the transport cycle is electrogenic (Fig. 2b and
Methods). A 1-to-1 Na+-substrate stoichiometry provides a

neutral symport cycle, since Neu5Ac is negatively charged, but
stoichiometries of 2-to-1 or higher are electrogenic supporting
our claim that two Na+ are translocated during each cycle. In
addition, sodium transport is cooperative with a Hill coefficient of
1.5 ± 0.1 (Fig. 2j), whereas Neu5Ac is not (Fig. 2c). This is
consistent with the hSGLT1 Hill coefficient of 1.5 ± 0.1, which has
a well-established 2-to-1 stoichiometry39. The sodium Hill
coefficients for the Na3 site Ser mutants was determined to 1.4
± 0.2 (S345A) and 1.2 ± 0.1 (S346A) demonstrating cooperativity
between the sodium ions (Supplementary Fig. 2).

To further explore the influence of Na+ binding on the
structure of SiaT, we performed eight MD simulations starting
from eight permutations of the structure with or without
substrate and Na+ ions in their identified binding sites
(Supplementary Table 2). With ions in both Na sites, Neu5Ac
is stably bound within the binding pocket over the 200 ns
timescale maintaining its hydrogen bonds with the unwound
section of Tm1 (Fig. 6a). Specifically, the carbonyl oxygen of
Leu59 directly interacts with the Na2 Na+, which stabilises the
neighbouring Ser60 so that it can maintain a bidentate interaction
with the carboxyl oxygen atoms of Neu5Ac, as observed in the
structure (Supplementary Movie 2). Additionally, the other
neighbouring Thr58 residue is able to maintain a backbone
hydrogen bond to the hydroxyl group at the C2 position of
Neu5Ac. In contrast, removing Na+ from the Na2 site makes
Neu5Ac unstable with the root mean squared deviation
increasing to 3–4 Å (Fig. 6a). The dihedral angles that Leu59
adopts are much greater (Fig. 6b–e), indicating that the Na2 site
influences the protein flexibility in the vicinity of the substrate
binding site.

For Na2-only simulations, the ion is stable in the site in the
presence of substrate, but becomes more mobile in its absence
(Fig. 6f–h). In fact, the Na2 ion transitions towards the Na3 site
coming within 2 Å of the deeper site, while concomitantly moving
5–6 Å away from Na2. Ion distributions in the Na3-only
simulations are independent of substrate occupancy and show
moderate localisation to the Na3-site identified in the structure,
with a slight tendency to move toward the Na2-site. We do not
observe bulk Na+ enter the empty Na2/Na3 sites, nor do we
observe water permeate the transporter, unlike simulations of the
inward-facing structure of vSGLT39.

Alternating access. To explore the transport mechanism, we
constructed an inward-facing model of SiaT based on vSGLT16

and created morphs between both states (Fig. 7, Supplementary
Movies 3 and 4). Starting from the outward-facing state, the outer
gate closes over the binding pocket through a large ~17 Å
movement of the N-terminus of Tm10 towards Tm1e and Tm2,
which concomitantly moves Tm9 ~10 Å towards Tm3. Addi-
tionally, the extracellular loop helices (Elh7a and Elh7b) collapse
into the extracellular vestibule and form contacts with the central
portion of Tm1e (Fig. 7c, d), as observed in LeuT and Mhp140,41.
The outer gate is stabilised in the closed position by hydrogen
bonds between Ala401 and Glu402 in the Tm9-Tm10 loop and
Thr312 (Elh7) and Thr73 (Tm1e), respectively. Upon closure, an
outer gate comprised of hydrophobic residues is created above the
substrate-binding site composed of Trp404 (Tm9-Tm10 loop),
Ile67 (Tm1) and Phe78 (Tm2) (Fig. 7d).

Substantial movements are also associated with opening the
inner gate. The first intracellular loop/helix (Ilh0) between Tm0
and Tm1 is originally in contact with the short intracellular loop
between Tm4i and Tm5 occluding the substrate from the
cytoplasm (Fig. 7e). The contact is stabilised by salt bridges
between the two conserved Arg31 and Arg44 (Ilh0) with Glu176
(Tm4i-Tm5 loop). Ilh0 is further stabilised in this intracellular

Table 1 Data collection and refinement statistics

SeMet-
SAD13merged

a
SeMet
(5NV9)b

Native
(5NVA)c

Data collection
Space group C2 C2 P22121
Cell dimensions
a, b, c (Å) 130.24, 97.99,

54.74
130.59, 98.07,
54.78

48.78, 97.76,
151.69

α, β, γ (°) 90, 92.16, 90 90, 92.15, 90 90, 90, 90
Resolution (Å)d 19.93–3.87

(4.32–3.87)
78.40–1.95
(2.00–1.95)

82.18–2.26
(2.34–2.26)

Rsym (%)d 25.9 (31.7) 17.4 (134.1) 14.8 (139.6)
I/σId 29.1 (28.6) 6.43 (1.22) 8.39 (1.39)
CC 1/2d 0.998 (0.997) 0.991 (0.452) 0.99 (0.388)
Completeness (%)d 99.0 (99.1) 99.2 (99.6) 96.64 (95.47)
Redundancyd 63.8 (64.4) 3.24 (3.28) 4.9 (4.9)
Refinement
Resolution (Å) 78.40–1.95 82.18–2.26
No. of reflections 47,316 61,303
Rwork/Rfree 19.88/24.35 22.43/26.08
No. of atoms 3998 3834

Protein 3715 3647
Neu5Ac 21 21
Sodium 2 2
DDM 35
Phosphate 5
Water 220 164

B-factors 29.9 33.9
Protein 28.5 33.6
Neu5Ac 23.9 29.9
Sodium 27.6 32.1
DDM 47.9
Phosphate 54.9
Water 42.7 42.0

R.m.s. deviations
Bond lengths (Å) 0.017 0.002
Bond angles (°) 1.85 0.51

aSeMet-SAD dataset was collected from 13 crystals
bSeMet dataset was collected from one crystal
cNative dataset was collected from one crystal
dValues in parentheses are for highest-resolution shell
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Fig. 2 Characterisation of SiaT. a SiaT is able to rescue growth of E. coli ΔNanT on Neu5Ac as the sole carbon source. The growth lag observed for ΔNanT
+pNanT and ΔNanT+pSiaT is due to IPTG induction of the T5 promoter on pNanT and pSiaT. Growth curves represent the mean of six experiments ±
SEM. b Time course of Neu5Ac uptake into proteoliposomes reconstituted with SiaT. In (black circle, black square, white triangle, black triangle),
valinomycin was added to facilitate K+ movement prior to transport. In (white circle), ethanol was added instead of valinomycin as a control. In (white
circle, black square, black circle), 10 mM NaCl was added together with [3H]-Neu5Ac; in (white triangle) 10 mM KCl was used in place of NaCl; in (black
triangle) no salts were used in the transport assay. In (black square), transport was measured in empty liposomes. On the left Y-axis, specific transport
activity is reported; on the right Y-axis transport in empty liposomes. is reported. Uptake data were fitted in a first-order rate equation for time course plots.
c The transport of [3H]-Neu5Ac in the presence of 10mM NaCl was measured in proteoliposomes reconstituted with SiaT, with an imposed K+ diffusion
membrane potential. Data were plotted using the Michaelis–Menten equation. d The kinetics of Neu5Ac transport by SiaT sialic acid binding site variants.
The transport of [3H]-Neu5Ac with or without NaCl was measured in proteoliposomes reconstituted with wild type and mutated variants, with an imposed
K+ diffusion membrane potential. All proteoliposome measurements (b–d) are presented as means ± SD from five independent experiments. e MST
binding assay of Neu5Ac binding to SiaT. f Representative isothermal titration calorimetry raw data (top) and binding isotherm (bottom) of Neu5Ac
binding with SiaT. g Chemical structures of N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) and ketodeoxynononic acid (KDN). h,
iMST binding assay of Neu5Gc (h) and KDN (i) binding to SiaT. j Determination of the SiaT Na+ Hill coefficient. Data were plotted using the Hill equation.
The inset represents the same data plotted using a log-scale for the X-axis to increase the resolution of low concentration data points. MST (e, h, i) and ITC
(f) experiments represent the mean of three independent experiments ± SEM; for each, data from one representative experiment is shown
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Fig. 3 Amino-acid sequence alignment and secondary structure of P. mirabilis SiaT with SiaT transporters from eight additional species of bacteria. SiaT
transporters from Morganella morganii, S. enterica, Vibrio fischeri, Plesiomonas shigelloides, Photobacterium profundum, S. aureus, C. perfringens, Clostridium
difficile and S. pneumoniae are aligned. Residues are numbered according to P. mirabilis SiaT, and the corresponding secondary structure of this transporter is
shown above the alignment, with α-helices depicted as coils. Residues highlighted with black boxes are conserved, residues implicated in sialic acid binding
are highlighted below with an orange asterisk and residues involved in sodium-binding are highlighted below with a blue asterisk
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closed conformation by interactions between Arg40 (Ilh0) and
Arg101 and Ile105 (Ilh2a). Interestingly, Arg40 aligns with Arg5
in LeuT, which was previously implicated in intracellular
gating40. To open the inner gate, Ilh0 breaks all of its bonding
partners and unravels while moving radially away from the
central axis of the transporter. At the same time, the cytoplasmic
ends of Tm8 and Tm9 move radially away from the inner pore
axis (Supplementary Movies 3 and 4).

Arg260 (Tm6) located just below Na3 also stabilises the inner
gate in a closed conformation through interactions with Ser53
(Tm1), Asp256 (Tm6) and Ser346 (Tm8) (Fig. 7f). It is highly
conserved among SLC5 members and aligns to Tyr265 in LeuT,
which was also implicated in inner gate closure20. The Arg260Glu
mutant exhibits no uptake (Supplementary Fig. 3), and we
speculate that the positive side chain may also block premature
Na+ exit from the Na3 site prior to adopting the inward-facing
state.

We analysed all SSS sequences that contained the primary
Na2 site (21,467) to determine the degree of conservation of the
Na3 site, allowing for threonine at either Ser345 or Ser346
(Table 2, Supplementary Data 1). Na3 is present in 19.6% (4212)
of these sequences including hSGLT1, which transports two Na+,
but not vSGLT or hSGLT2, which transport only one Na+

(Table 2). None of the structures in the closely related
neurotransmitter sodium symporter (NSS), betaine/choline/

carnitine (BCC) or nucleobase-cation-symport (NCS1) families
have the Na3 site—the corresponding residues are all hydro-
phobic in LeuT20, Mhp124, dDAT42 and the serotonin transporter
(SERT)43.

Discussion
Our results suggest that this subgroup of the SSS family utilise the
binding energy of a second Na+ ion to allosterically stabilise the
substrate without directly coordinating it as observed for endo-
genous ligand binding to LeuT20 and inhibitor binding to
dDAT42 and SERT43. The simulations indicate that binding a
second ion further pre-organises the binding site to increase
substrate binding affinity, and it may play an important role in
stabilising the outward-facing conformation. Our results inform
how secondary active transporters harness additional energy from
ion gradients by changing their stoichiometry, and it might be
possible to pharmacologically exploit differences in this
mechanism between SSS family members and other transporters
with the LeuT fold.

Methods
Cloning and mutagenesis. The genes coding for the Proteus mirabilis (strain
HI4320) sialic acid transporter SiaT (PMI2976) and the Escherichia coli sialic acid
transporter NanT (P41036) were codon optimised for E. coli (GeneArt, Thermo-
Fischer Scientific) (Supplementary Table 3). For crystallisation and functional
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studies, the gene coding for SiaT was cloned into the pWarf(−) vector44 (pSiaT1),
which carries a C-terminal human rhinovirus 3C protease (HRV 3C) cleavage site
followed by a green fluorescence protein (GFP)-tag and an 8× His-tag. For bacterial
growth experiments, the genes coding for SiaT and NanT were cloned into the low-
copy vector pJ422-01 (pSiaT2 and pNanT1) containing a T5 promoter. Constructs
were generated using the In-Fusion HD Cloning Kit (Clontech). Single-point
mutations were introduced in pSiaT1 using the QuikChange (II) Site Directed
Mutagenesis Kit (Stratagene) (Supplementary Table 4). The identity of each con-
struct was confirmed by DNA sequencing (Eurofins Genomics).

Bacterial growth experiment. pSiaT2 and pNanT1 were transformed into the
E. coli JW3193 ΔnanT strain [NBRP (NIG, Japan):E. coli]45 and verified by DNA
sequencing (Eurofins Genomics). Cells were harvested from starter cultures grown
overnight in Luria-Bertani broth supplemented with Zeocin™ (5 µg/mL), washed
three times in M9 minimal media and diluted to an OD600 of 0.05. Cell culture (10
µL) were added to a Honeycomb Bioscreen plate (100 wells) containing M9 media
(360 µL) supplemented with Zeocin™ (25 µg/mL), isopropyl β-D-1-thiogalactopyr-
anoside (IPTG) (1 mM), thiamin hydrochloride (7 µM) and Neu5Ac (4 mg/mL,
12.9 mM) as the sole carbon source. Growth at 37 °C with shaking at 250 rpm was
monitored between 480 and 700 nm using a Bioscreen C automated growth curve
analysis system (Oy Growth Curves AB Ltd.) measuring the OD480-700 every
20 min. Experiments were carried out in duplicate and with biological triplicates.
Growth curves represent the mean of six experiments ± the standard error of the
mean (SEM). The E. coli BW25113 wild-type strain and JW3193 [NBRP (NIG,
Japan):E. coli] were used as controls.

Protein production and purification. The pSiaT1 plasmid was transformed into
the E. coli Lemo21(DE3) strain (NEB). The strain was grown in Terrific Broth
media supplemented with kanamycin (50 µg/mL), chloramphenicol (34 µg/mL), L-
rhamnose (250 µM) and induced with IPTG (0.4 mM) at 25 °C overnight with
shaking at 200 rpm. Selenomethionine-derivatised (SeMet) protein was produced
using PASM-5052 auto-induction media46.

Cells were solubilised in phosphate-buffered saline (PBS) supplemented with
cOmplete™ EDTA-free protease inhibitor tablets (Roche), lysozyme (0.5 mg/mL),
DNaseI (5 µg/mL), MgCl2 (2 mM) and disrupted using an EmulsiFlex-C3
(AVESTIN) at 20,000 psi. Cell debris was removed at 24,000×g, and the cell
membranes were collected with ultracentrifugation at 235,000×g for 2 h and
stored at −80 °C until further use. Cell membranes were solubilised in 2% (w/v)
DDM for 2 h at 4 °C and unsolublised material were removed at 150,000×g. The
supernatant was subjected to immobilised metal affinity chromatography and
loaded onto a 5 mL HisTrap FF column (GE Healthcare) equilibrated with Buffer A
(70 mM Tris pH 8.0, 150 mM NaCl, 20 mM imidazole, 6% glycerol, 5 mM β-
mercaptoethanol and 0.0174% (w/v) DDM). The protein was purified with an
ÄKTA system connected to a JASCO Model FP-2020 Intelligent Fluorescence
Detector (excitation: 485 nm and emission 512 nm), washed with Buffer A and
collected using a linear gradient up to 75% of Buffer B (Buffer A complemented
with 500 mM imidazole) over 30 column volumes. Protein was concentrated and
simultaneously exchanged into Buffer C (50 mM Tris pH 8.0, 150 mM NaCl, 5 mM
Neu5Ac, 0.0174% (w/v) DDM). The GFP-tag was cleaved with HRV 3C protease in
a 1:12.5 mass ratio (enzyme:substrate) at 4 °C for 20 h. Size exclusion
chromatography was performed as a final purification step using a HiLoad 16/600
Superdex 200 column in Buffer C. Protein concentration was determined using a
ND-1000 spectrophotometer at 280 nm, using the extinction coefficient of 76,445
per M per cm and a molecular weight of 55.1 kDa.

For purification of the SeMet protein, a reverse immobilised metal affinity step
was added following the HRV 3C protease cleavage. The sample was passed
through a 5 mL His-TRAP FF column equilibrated with Buffer C.

The SiaT mutants were produced in PASM-5052 auto-induction media and
purified in the same way as SeMet protein. For MST, ITC and proteoliposome
measurements, the protein samples were produced in the same way as mutants and
purified without Neu5Ac in Buffer C.

Crystallisation. Initially, hanging-drop vapour diffusion experiments at 20 °C
using a Mosquito nanolitre-dispensing robot were set up using the crystal screens
MemGold, MemGold II and MemStart/MemSys. A volume of 0.5 µL protein
solution (20 mg/mL) and 0.5 µL reservoir solution were equilibrated over 100 µL of
reservoir solution. Crystals of SiaT appeared after 1–2 weeks with reservoir solution
composed of 0.1 M sodium citrate pH 5.0, 0.2–0.25M potassium chloride and
30–40% (w/v) pentaerythritol propoxylate (5/4/PO/OH). SeMet-incorporated
crystals were obtained in the same conditions, with 1% OG and 20mM Neu5Ac
added to the reservoir.
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entire 200 ns simulation (light blue), and the data set is contoured at values of 100 (black), 50 (red) and 10 (yellow). The ϕ and ψ values in the X-ray
structure are represented as a black dot. The distributions in panels d and e, which lack an ion in the Na2 site, are so broad that the black high-density
contour does not exist. f, g Ion stability in the Na2 and Na3 sites. Simultaneous distance of bound Na+ ions to the Na2 site and the Na3 site from 200 ns
MD simulations in the presence or absence of Neu5Ac with both Na+ ions bound (f), only the Na2 ion bound (g) and only the Na3 ion bound (h). In all
panels, every point represents a simulation frame saved every 40 ps, the Na2 ion position is blue (with substrate) or green (without substrate), and the
Na3 ion position is red (with Neu5Ac) or yellow (without Neu5Ac)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04045-7 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1753 | DOI: 10.1038/s41467-018-04045-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Data collection and structure determination. The native data set was collected at
beamline 5.0.2 of The Advanced Light Source (Lawrence Berkeley National
Laboratory, Berkeley, CA). The SeMet-SAD data sets were collected at Diamond
Light Source at beamline I24. The SeMet-SAD data sets were processed using
XDS47. SeMet-SAD data sets from 13 different crystals were merged and scaled
using BLEND48. SeMet sites were identified and refined with the programs SHELX
and SHARP49,50. The phases were further improved by RESOLVE and an initial
model was built using the ARP/wARP web service51. The structure from the best-
diffracting SeMet-SAD data was determined by PHASER52 to 1.95 Å resolution in
space group C2. The native data set was processed in xia2 through CCP4i and
solved to 2.26 Å in space group P2212153,54. All structures were refined using
PHENIX55. Data collection and refinement statistics are summarised in Table 1. In

X-ray crystallography, it is difficult to differentiate sodium ions from water
molecules unless the resolution is under 1.2 Å56; however, a distinguishing feature
of Na+ sites is that they are typically coordinated by 4 to 8 partners at distances less
than 2.7 Å57. In SiaT, both sites have clear electron density peaks and coordinate
five partner atoms at distances ranging from 2.2 to 2.5 Å (Fig. 4a), which is
inconsistent with water molecules at these sites.

Microscale thermophoresis binding assay. Binding assays were carried out on
wild type protein using MST performed on a Monolith NT.LabelFree instrument
(NanoTemper Technologies). A range of concentrations of Neu5Ac (from 0.3 μM
to 10mM) were incubated with 1 μM of purified SiaT in PBS buffer supplemented
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with 0.0174% (w/v) DDM for 5 min prior to taking measurements. The samples
were loaded into NanoTemper Technologies glass capillaries and MST measure-
ments were carried out using 10% LED power and 40% MST power. The dis-
sociation constants (Kd) were determined using the mass action equation via the
NanoTemper Technologies software from duplicate reads of triplicate experiments
and reported as ±SEM.

Isothermal calorimetry. Wild-type protein was concentrated to a final con-
centration of 77–178 μM using membrane ultrafiltration with a molecular-weight
cutoff of 50 kDa. The flow-through was used to dilute a 100 mM stock solution of
Neu5Ac to a concentration of 2.5–3.8 mM. A volume of 206 μL of protein was
loaded into the sample cell, and 70 μL of Neu5Ac was loaded into the injection
syringe. The system was equilibrated to 25 °C with a stirring speed of 750 rpm.
Titration curves were initiated by a 1 μL injection followed by 2 μL injections every
180 s. Background corrections were obtained by injection of Neu5Ac into buffer
and buffer into protein with the same parameters. The data from triplicate
experiments were analysed using ORIGIN 7 with the first injection excluded. The
curves were fitted into a single-site binding isotherm. Measurements were made in
biological triplicates using a Micro-200 ITC or a PEAQ ITC (MicroCal, Malvern).
The Kd value was reported as ±SEM.

Reconstitution of SiaT in proteoliposomes. The purified SiaT wild type and
mutants were reconstituted by removing the detergent using a batch-wise
method58. 2.5 μg of protein was mixed with 120 μL 10% C12E8, 100 μL of 10% egg
yolk phospholipids, sonicated to form liposomes. We then added 20 mM
of K+-gluconate buffered by 20 mM Tris HCl pH 7.0 to create a final volume of
700 μL. The mixture was incubated with 0.5 g Amberlite XAD-4 resin under
rotatory stirring (1200 rev/min) at 25 °C for 40 min59.

Transport measurements. After reconstitution, transport experiments were
conducted at 25 °C. In brief, 600 μL of proteoliposomes were loaded onto a
Sephadex G-75 column (0.7 cm diameter × 15 cm height) pre-equilibrated with
20 mM Tris-HCl pH 7.0, 40 mM sucrose to balance internal osmolarity. To gen-
erate a K+ diffusion potential, valinomycin (0.75 μg/mg phospholipid) prepared in
ethanol was added to the proteoliposomes following Sephadex G-75 column
chromatography. As a control, ethanol was added to proteoliposomes, which did
not exert any effect on the transport activity. After 10 s of incubation with vali-
nomycin/ethanol, transport was started by adding 50 μM [3H]-Neu5Ac to the
proteoliposomes in the presence of 10 mM NaCl. The initial rate of transport was
measured by stopping the reaction after 10 min, i.e., within the initial linear range
of [3H]-Neu5Ac uptake into the proteoliposomes. Transport was terminated by
removing [3H]-Neu5Ac by loading each proteoliposome sample (100 μL) on a
Sephadex G-75 column (0.6 cm diameter × 8 cm height). Proteoliposomes were
eluted with 1 mL 50 mM NaCl and collected in 4 mL of scintillation mixture,
vortexed and counted. Uptake data were fitted in a first-order rate equation for
time course plots. Radioactivity uptake in controls performed with liposomes
(without incorporated protein) were negligible with respect to transport data. Non-
linear fitting analysis was performed by Grafit software (version 5.0.13). To mea-
sure the specific activity of SiaT and mutants, the amount of protein was estimated
as described in the above sub-section (Protein production and purification). All
measurements are presented as means ± SD from five independent experiments.

Ultracentrifugation of proteoliposomes. To verify proper incorporation of the
wild type and mutant SiaT variants into proteoliposomes, reconstitution mixtures
were passed through Sephadex G-75 column and 600 µL were ultracentrifuged
(110,000×g, 1 h, 4 °C). Pellets were solubilised with 3% SDS and subjected to 12%
SDS-PAGE and silver stained for detection.

Molecular dynamics simulations. Eight systems (S1-S8) were simulated starting
with different ion and substrate bound conformations of the transporter (Sup-
plementary Table 2). Initially, the protein was oriented in the membrane using the
online server Orientation of Proteins in Membranes (OPM)60. Titratable states
were addressed with PROPKA calculation in the membrane framework with
APBSmem, v2.0.261. Next, the transporter was inserted in each of the 8 states
described in Supplementary Table 2 into a 1-palmitolyl-2-oleoyl-sn-glycero-3-
phosphatidylethanolamine (POPE) membrane using the CHARMM-GUI Mem-
brane Builder62. Each system was then solvated in a rectangular box (90 × 90 × 106
Å3) containing 150 mM Na+ and Cl− resulting in final system sizes of ~86,000
atoms. All system files were then converted from CHARMM to AMBER format
with in house scripts. Simulations were carried out using the ff14SB AMBER
parameter set for the protein63, GLYCAM06 for the Neu5Ac64, the Joung-Chetham
parameters for the monovalent ions65 and LIPID14 for the lipids66. The TIP3P
model was used to simulate the water67. All systems were then minimised with
NAMD version 2.1068, using conjugate gradient for 10,000 steps. Following
minimisation, the systems were gradually heated from 10 to 310 K at a rate of
20 K/15 ps using temperature reassignment. During the heating phase, the
dynamics were carried out in the constant volume/temperature (NVT) ensemble,
using a 1 fs integration interval and 50 kcal/mol/Å2 harmonic restraints on Na+ in
the Na2 and Na3 sites, the heavy atoms of the Neu5Ac, all protein heavy atoms,
and two bound Cl− ions resolved in the structure. The lipid head groups and water
oxygen atoms were harmonically restrained with 20 and 2 kcal/mol/Å2 force
constants, respectively. After reaching 310 K, the force constraints on the water
were decreased by half followed by a 25 ps NVT simulation. Next, we switched to
the NPT ensemble using the Langevin piston barostat with a 200 fs piston period
and 100 fs piston decay constant to maintain the pressure at 1 bar. Temperature
was maintained at 310 K using Langevin dynamics with a 0.5/ps damping coeffi-
cient. For the next 610 ps, the restraints were reduced to 10 kcal/mol/Å2 for the
heavy atoms of the protein backbone, ring atoms of the sialic acid, and bound Na+

and Cl− atoms; 5 kcal/mol/Å2 for the side chain heavy atoms, the terminal sub-
strate heavy atoms, and the lipid head group atoms; and the water restraints were
reduced to 0.5 kcal/mol/Å2. During the subsequent 610 ps, the force restraints on
the protein, substrate, ions, and lipids were decreased by half; the waters were
released; and the integration time step was increased to 2 fs. All remaining
restraints were then gently reduced over the next 1.8 ns followed by 5 ns equili-
bration without restraints. Finally, each system was simulated for 200 ns. Hydrogen
bond lengths were restrained with the SHAKE algorithm69. Each system was
neutralised during setup, and the particle mesh Ewald summation method was
used to calculate long range electrostatics with the default cubic order interpolation
order. All short range interactions were switched to zero at 10 Å.

Homology modelling of SiaT in inward-open conformation. The inward-facing
conformation of SiaT was modelled on the inward-facing structure of the SSS Na
+/galactose cotransporter from Vibrio parahaemolyticus (vSGLT). The two trans-
porters share ~24% of sequence identity and ~46% of sequence similarity.
Initially, an alignment between the two proteins was carried out using a global
sequence alignment with EMBOSS stretcher70 followed by a second, independent
structural alignment withMatchMaker71 performed within Chimera (ver. 1.10.1)72.
Since the inward and outward-facing states adopt distinct configurations, the
structural alignment produced suspect results in certain areas specifically around
the Tm9–10 region, which undergoes large conformational rearrangements during
gating. Therefore, the consensus alignment from both methods were used followed
by a few minor hand adjustments in regions that varied, such as where the
structural alignment was problematic. Next, Modeller (ver. 9.15) was used to
create inward-facing models of SiaT using chain A of vSGLT (pdbid: 3DH4) as a
template structure for the final alignment73. One hundred models were generated,
and the best Discrete Optimised Protein Energy (DOPE) score along with

Table 2 Sodium to substrate stoichiometry and residues of the sodium Na3 site

Transporter SiaT vSGLT16,25 hSGLT126 hSGLT226 NIS28 EcPutP27 BetP18 LeuT20,78 SERT43,79 DAT21,80 Mhp124

Family SSS SSS SSS SSS SSS SSS BCC NSS NSS NSS NCS1
Pdbida 5NV9 3DH4 ND ND ND ND 4LLH 4MM4 5I6X 4M48 2JLN
Side chain D182b D189 D204 D201 D191 D187 S306 A195 V281 V265 N168
Main chain S342 S364 S392 S392 S353 S340 T467 T354 D437 D420 S312
Side chain S345 A367 T395 A395 S356 S343 D470 I357 F440 F423 P315
Side chain S346 S368 S396 S396 T357 C344 S471 A358 A441 G424 A316
Side chain T57c A63 S77 S74 S66 S54 A148 V23 V97 V45 M39
Stoichiometry 2:1 1:1 2:1 1:1 2:1 1:1 2:1d 2:1d 1:1e 2:1d 1:1

SSS solute-sodium symporter family, BCC betaine/choline/carnitine family, NSS neurotransmitter sodium symporter family, NCS1 nucleobase-cation-symport family
aDOI for pdb codes: pdbid: 3DH4, 4LLH, 4MM4, 5I6X, 4M48, 2JLN
bResidues that are conserved to SiaT are highlighted in bold
cSecond coordination shell
d2 Na+ to 1 substrate, but no Na3 site present
e1 Na+, 1 Cl− and 1 substrate
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visual inspection of the loops led to the final model we choose to present in the
manuscript74.

Figures and sequence alignments. Figures of protein structures were prepared
with PyMOL (PyMOL molecular Graphics System; Schrödinger LLC) and
Ligplot+ 75. All figures were made using the coordinates from the seleno-derived
SiaT. Secondary structure was assigned using the program DSSP76. Multiple pro-
tein sequence alignment was performed between SiaT and additional SiaT sialic
acid transporters from Morganella morganii (WP_004237805.1), Salmonella
enterica (KYN56341.1), Vibrio fischeri (AAW85163.1), Plesiomonas shigelloides
(WP_010863240.1), Photobacterium profundum(WP_011218958.1), Staphylo-
coccus aureus (WP_000665723.1), Clostridium perfringens (WP_003457485.1),
Clostridium difficile (WP_021423455.1) and Streptococcus pneumoniae
(WP_061771177.1). This alignment was generated using ClustalW, and
ESPript 3 with manual editing. To compare conservation of the Na2 and
Na3 site, vSGLT (pdbid: 3DH4) and Mhp1 (pdbid: 2JLN) were superposed onto
SiaT in PyMOL and then hSGLT1 and hSGLT2, NIS, EcPutP were aligned based
on sequence homology using ClustalW, LeuT (pdbid: 4MM4), dDAT (pdbid:
4M48), SERT (pdbid: 5I6X) and BetP (pdbid: 4LLH) were structurally aligned to
look at the Na2 conservation. The Na3 site was derived by proximity to the
Na2 site.

Evolutionary conservation of the Na+-binding sites. Evolutionary conservation
of the Na2 and Na3 sites throughout the SSS family was assessed by downloading
all sequences (39,612) in UniProt matching to the HMM profile of the Pfam
family PF00474 (SSF) on 2 May 2017. The C2LEL6.1 protein sequence was used as
reference to construct a HMM profile using hmmbuild, part of the HMMER3
package version 3.1b77 and the sequences representing the Pfam PF00474
family were aligned to this HMM profile using hmmalign. A custom alignment tool
(COAT; available from http://microbiology.se/software/coat/) was used to
cluster the aligned sequences based on the residues present in the positions of the
Na2 site (342, 343) and Na3 site (57, 182, 345, 346) of the SiaT protein sequence.
Based on these clusters, the frequencies of conserved residues were established. Out
of 39,612 sequences, 21,467 (54.2%) had a conserved Na2 site, of which 4212
(10.6%) also had a conserved Na3 site (Supplementary Data 1). In addition,
45 sequences apparently had a conserved Na3 site, but curiously lacked the
Na2 site.

Data availability. Coordinates and structure factor files have been deposited to the
Protein Data Bank (PDB) under the accession numbers 5NV9 (SeMet) and 5NVA
(native). Other data are available from the corresponding authors upon reasonable
request.
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