
Journal of Computational Physics 422 (2020) 109755
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A computational model of protein induced membrane 

morphology with geodesic curvature driven 

protein-membrane interface

Y.C. Zhou a,∗, David Argudo b, Frank V. Marcoline b, Michael Grabe b

a Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States of America
b Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, CA 94143, United 
States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2020
Received in revised form 29 July 2020
Accepted 31 July 2020
Available online 13 August 2020

Keywords:
Bilayer membrane
Protein
Interface
Geodesic curvature
Surface phase field
Elasticity

Continuum or hybrid modeling of bilayer membrane morphological dynamics induced 
by embedded proteins necessitates the identification of protein-membrane interfaces and 
coupling of deformations of two surfaces. In this article we developed (i) a minimal 
total geodesic curvature model to describe these interfaces, and (ii) a numerical one-
to-one mapping between two surface through a conformal mapping of each surface 
to the common middle annulus. Our work provides the first computational tractable 
approach for determining the interfaces between bilayer and embedded proteins. The one-
to-one mapping allows a convenient coupling of the morphology of two surfaces. We 
integrated these two new developments into the energetic model of protein-membrane 
interactions, and developed the full set of numerical methods for the coupled system. 
Numerical examples are presented to demonstrate (1) the efficiency and robustness of 
our methods in locating the curves with minimal total geodesic curvature on highly 
complicated protein surfaces, (2) the usefulness of these interfaces as interior boundaries 
for membrane deformation, and (3) the rich morphology of bilayer surfaces for different 
protein-membrane interfaces.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Lipid bilayer membranes are highly curved macromolecules whose curvatures have been long recognized as an essential 
structural feature in key biological processes such as membrane trafficking, cytokinesis, infection, and cell motion. Biological 
membranes, however, are far more complicated than simple bilayers because of the presence of non-lipid components, in 
particular, proteins. Measured by weight, the ratio of protein to lipid is about 0.2 in myelin, while in the mitochondrial 
inner membrane the ratio is about 3.0 [1]. More recent measurements identified about 40 different membrane proteins 
in the membrane of a synaptic vesicle with a diameter around 40 nm [2]. Generation, modulation, and maintenance of 
biological membrane curvatures are therefore intrinsically coupled to the interactions between lipid bilayers and membrane 
proteins. These interactions also determine the conformational change of transmembrane segments of membrane proteins 
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[3], see for example the gating of mechanosensitive ion channels [4]. The importance and complexity of protein-mediated 
membrane morphological variation have thus fascinated investigators from various research areas.

In this article we develop a hybrid computational model of protein embedding into bilayer membrane for quantifying 
two critical geometric features of protein-membrane interactions. These are (i) the interface between bilayer and the em-
bedded protein, and (ii) the surface morphology of the bilayer with the embedded protein. This interface sets a boundary 
for the lipid bilayer whose deformation will produce a tension on the boundary that shall displace the interface as a feed-
back, thus defining a bidirectional coupling between membrane morphological changes and the state of protein inclusion. 
Different treatments exist for modeling these two features. Continuum [5] or hybrid [6–10] models usually treat the whole 
bilayer or its two individual leaflets as an elastic sheet using the classical Helfrich theory [11–13]. An explicit specification of 
membrane edge and the boundary condition for displacement are in these models. In fully atomistic [14] or coarse-grained 
[15,8] models it is not necessary to explicitly track the protein-membrane interface or membrane surface as they arise nat-
urally as a result of trajectories of particles under simulations. However, it still remains a grand challenge for full atomistic 
or coarse-grained molecular dynamics simulators to model protein modulated membrane deformations or membrane medi-
ated protein conformation changes of biologically relevant spatial and time scales [16]. Continuum or hybrid models appear 
attractive for tackling these problems for they can be scaled to large domains and long time simulations at a relatively low 
computational cost.

Descriptions of protein membrane interfaces and boundary conditions for membrane elasticity vary in complexity and 
detail. For example, in [15,17] the channel protein is represented as cylindrical rods located within, but without direct 
contact with, a pre-determined pore in an elastic sheet the modeling bilayer. The force between the protein rods and the 
membrane is described by Coulomb interactions, generating a bidirectional model for the gating of mechanosensitive ion 
channels. Consistent protein-membrane interface is found by using an immersed boundary method for proteins represented 
as cylinders or cones [9]. As a result, these models are able to generate rotationally symmetrical membrane bending induced 
by proteins, but fail to reproduce realistic asymmetrical membrane deformations associated with anisotropic inclusions 
of membrane proteins [18]. These asymmetrical deformations can be characterized by using the two distinct principal 
curvatures κ1 �= κ2. These two curvatures are associated with the complex shape and specific orientation of membrane 
proteins, and are indispensable for the generation of negative Gaussian curvature required by all endocytosis and exocytosis 
processes of living cells [19,20]. Determination of protein-membrane interface, i.e., the contact curves between the protein 
and the two membrane surfaces, is at the center of the continuum or hybrid modeling of protein-membrane interactions 
[21,9].

We model the protein-membrane contact lines as curves evolving on the 3-D protein surface driven by the geodesic 
curvature energy and the nonpolar energy. The geodesic curvature energy models the line tension at the contact curves 
between the protein and the membrane surfaces. This energy is locally minimized on membrane surface when the curve 
is a geodesic. To track the minimization of the geodesic curvature energy we adopt the approach in [22] to develop a 
surface phase field model where the evolution of the surface phase field function follows the gradient flow of the curvature 
energy. Furthermore, the bilayer has two high dielectric layers of polar headgroups that face the aqueous solution and a 
low dielectric hydrophobic core at the center. Inclusion of hydrophobic amino acids of the transmembrane proteins into 
the bilayer must go through the headgroup layers before getting into the energetically favorable hydrophobic core, and the 
final state of inclusion depends on the matching of hydrophobic domains of both structures. The nonpolar energy, described 
by the scaled particle theory (SPT) [23,24], is a function of the protein surface area exposed to the aqueous solvent, and 
thus can be represented using the surface phase field function as a force additional to the variation of the curvature energy 
functional.

The geodesic curvature flow in a Riemannian surface, also known as the curve shortening flow [25,26], is an important 
mathematical and computational tool in image processing, computer vision, and material sciences. The geodesic curvature 
flow equation, when posed in a level set formulation, is usually given by a highly nonlinear Hamilton-Jacobi equation for 
the level set function φ:

φt = |∇φ|∇ ·
(

∇φ√|∇φ|2 + β

)
, (1)

where β > 0 is a small constant introduced to avoid division by zero [27–30]. The surface phase field model we devel-
oped previously for microdomain formation in bilayer membrane describes the similar evolution of the geodesic curvature 
flow and is numerically more tractable [22]. The limiting case of this surface phase field model at the vanishing intrinsic 
geodesic curvature of the microdomains is adopted to characterize the geodesic curvature flow in this study. The contact 
angle at the computed three-phase contact line (i.e., protein, solvent, and lipids) can be found using a generalized Young’s 
formula [31,32], which prescribes the normal derivative of the displacement of the membrane surface. The position and the 
normal derivative comprise a full set of Dirichlet boundary condition on the protein-membrane interface. Along with the far 
field boundary conditions (cf. (26)) the fourth-order equation describing the membrane surface displacement [6,21] will be 
solvable.

The displacements of the two membrane surfaces are not independent. Lipids are incompressible regardless of the gel or 
liquid phase in which they exist. This leads to the first constraint on the membrane displacement and has been character-
ized by the term penalizing the change of the membrane thickness [33,10]. The inclusion of protein into the bilayer causes 
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the lipid director, i.e., the average longitudinal axis directed from the lipid head group to lipid tail, to deviate from their 
surface normal. This tilt deformation was recognized [73,34,35] but has not been considered in the continuum or hybrid 
modeling of bilayer membrane deformation until very recently [36]. Mismatch of the lipid directors of the two surfaces 
constitutes the second constraint for the coupling of the membrane displacement. However, the inclusion of a transmem-
brane protein with arbitrarily complicated configuration into the bilayer makes it computationally challenging to establish 
one-to-one correspondence between the two membrane surfaces. A previous practice decomposes the two membrane sur-
faces as matched and unmatched domains, while the coupling of membrane displacement through the penalty of membrane 
thickness is only enforced in the matched domain [33]. In this work we take advantage of the topological equivalence of 
the two membrane surfaces with protein inclusion to map them onto the same annulus. This allows us to find the one-to-
one correspondence between the membrane surfaces, thus avoiding the splitting of matching and unmatched domains, and 
permitting the efficient enforcement of both constraints on the membrane displacement. Finally, the inclusion of proteins 
with charged residues from the high dielectric solvent to the low dielectric bilayer core has an electrostatic barrier to pass 
through. The resolved protein-membrane interface and the membrane surfaces allow a convenient characterization of the 
dielectric interface and the corresponding electrostatic potential energy.

The rest of the manuscript is organized as follows. In Section 2 a brief introduction of the transmembrane inclusion 
of protein into lipid bilayer is followed by the energy functional formulation of solvated protein-membrane complex. The 
total energy consists of the geodesic curvature energy, the coupled bilayer mechanical energy, nonpolar energy, and the 
electrostatic potential energy. We will compute the weak derivatives of this functional with respect to the surface phase 
field function, the membrane displacements, and the electrostatic potential. Corresponding partial differential equations 
(PDEs) will be derived. Numerical solutions of these coupled PDEs will be discussed in Section 3 where we will introduce the 
discontinuous Galerkin methods for solving the surface Cahn-Hilliard equation and the membrane displacement. Mapping of 
the two membrane surfaces to the same annulus and the assembly of the surface mesh for the protein-membrane complex 
will also be presented. The proposed computational model is applied in Section 4 to the M2 proton channel, a protein in 
the influenza A virus envelope. The simulated protein-membrane interfaces and the membrane surface morphology will be 
examined against the experimental measurements. A summary and outline of future perspectives are presented in Section 5.

2. Hybrid model of the solvated bilayer membrane with transmembrane protein

Consider a bilayer membrane as illustrated in Fig. 1 (left). The two surfaces, at height u+ and u− , represent the two 
leaflets of the bilayer stacked upon each other, with respective flat equilibrium heights at ±L0. If membrane surfaces are 
curved, the normal vectors n+ and n− on the top (+) and bottom (−) surfaces will not align with their respective top 
and bottom lipid directors n+

l and n−
l . Inclusion of the transmembrane protein causes the re-orientation of lipids near the 

protein, further deviating the lipid directors from their equilibrium orientation by tilt vectors t+ and t− defined as

t± = n± − n±
l . (2)

When the two lipid directors are not aligned as observed in case of protein inclusion, cf. Fig. 1(middle), the tilt energy could 
be significant. With the Monge parameterization of the surface heights u+, u− , the surface normal vectors can be computed 
using

n± = (∓∇u±(x, y),∓1). (3)

On the other hand, the transmembrane protein contacts the two membrane surfaces at two closed curves, as shown in 
Fig. 1(right), where they are modeled as zero-level sets of the phase field function ψ defined on the protein surface, with 
red patch being the protein surface inside the bilayer while the blue patch is in in the aqueous solution exterior to the 
bilayer.

2.1. Energetics of solvated protein-membrane complex

The total free energy G for the entire protein-membrane complex is defined as the summation of the electrostatic 
potential energy Ge , the nonpolar energy Gnp , the membrane elastic energy Gme , and the geodesic curvature energy G geo of 
protein-membrane interfaces:

G = Ge + Gnp + Gme + G geo. (4)

Here the energy G geo is defined on the protein surface P by

G geo =
∫
P

Kl

[
ξ�sψ + 1

2ξ
(1 − ψ2)ψ

]2

ds (5)

where ψ ∈ [−1, 1] is the phase field function, �s is the surface Laplacian, ξ > 0 is a parameter adjusting the transition of 
ψ = −1 in the bilayer to ψ = 1 in the aqueous solution, and Kl is the line tension coefficient. The square bracketed function 
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Fig. 1. Illustration of protein inclusion in a lipid bilayer. Left: the two membrane surfaces and the attached vectors. Middle: The protein inclusion causes the 
unalignment of the lipid vectors from two bilayers near the inclusion. Right: The protein inclusion with two protein-membrane contact curves represented 
as the boundaries of a surface phase field function. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

is the approximation of the geodesic curvature using the surface phase field function [22]. Here it is associated with line 
tension on the protein-membrane interface. The electrostatic potential energy Ge is given by

Ge =
∫
�

[ε

2
|∇φ|2 − qφ − κ2 cosh(φ)

]
dx, (6)

where φ is the electrostatic potential, � is a 3-D domain containing the membrane-protein complex, ε is the dielectric 
permittivity which takes different values in different molecular domains, q is the spatial-dependent charge density, κ is the 
ionic strength in the solvent (and thus is zero in proteins or lipid bilayers). Our model of electrostatics can be replaced by 
other variational formulations of implicit solvent models to include more sophisticated dielectric effects such as nonlocal 
responses [37–39], finite particle size of ions and solvent [40,41], or surface charge or dipolar densities of bilayers [7,42]. The 
discontinuity of ε at the membrane surfaces shall induce dielectric surface forces, generating a driving force for membrane 
deformation.

The nonpolar energy Gnp is defined to be the work for transferring solute molecules between polar and nonpolar solvents, 
given by a function of the Solvent Accessible Surface Area (SASA)

Gnp = γA(Am − As), (7)

where γA is the constant characterizing the energy to transfer a unit molecular surface area from the polar to non-polar
solvent [43], and Am, As are SASAs in the interior and exterior of the bilayer, respectively. The term proportional to the 
molecular volume as seen in many nonpolar solvation energy models [24,44] is not considered here. The lateral pressure 
varies drastically across the bilayer because of the highly inhomogeneous molecular structure of the bilayer, and thus there 
does not exist a constant of proportionality similar to the uniform hydrostatic pressure in the aqueous solvent [45–47]. 
Microscopic chemical potentials have been defined to quantify the dependence of lateral pressure on the cross-sectional 
area of the protein [48,49]. Energetically these efforts relate the mechanical energy of the protein inclusion to the change of 
membrane morphology which will be modeled by Gme . It is therefore necessary to remove the volume term of the nonpolar 
solvation energy in our model to avoid double counting. With the surface phase field function ψ we can conveniently 
approximate

Am =
∫
P

(ψ − 1)ds, As = −
∫
P

(ψ + 1)ds. (8)

The membrane elastic energy Gme includes the energies associated with the fundamental modes of membrane deforma-
tions and lipid tilt:

Gme =
∫
S

Kc

2

[
(∇2u+ + ∇ · t+ − J+

0 )2 + (∇2u− − ∇ · t− − J−
0 )2

]
ds+

∫
S

KG

2

(
K − + K +)

ds +
∫
S

α

2

(
|∇u−|2 + |∇u+|2

)
ds+

∫
S

Kα

L2
0

(u+ − u−)2ds +
∫
S

Kt

2

(
|t+|2 + |t−|2

)
ds+

∫
S

Kt w

2

(
|∇ × t+|2 + |∇ × t−|2

)
ds +

∫
S

Ke

2

(
|n+ − n0|2 + |n− − n0|2

)
ds, (9)
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where the integrals in order represent the splay (mean curvature), saddle splay (Gaussian curvature), surface tension, com-
pression of membrane surfaces and tilt-stretch, tilt-twist, and configurational entropic cost of lipid chains, with respective 
constant coefficients Kc the bending modulus, KG the Gaussian modulus, α the surface tension coefficient, Kα the compres-
sion modulus, Kt , Kt w , Ke the moduli of tilt, tilt-twist, and configurational confinement [33]. J±

0 , n±
0 are the spontaneous 

mean curvature and spontaneous director vector of the respective surfaces. These constants are assumed to be the same for 
two leaflets, though their dependence on the lipid composition can be introduced at the cost of computational complexity. 
K ± are the Gaussian curvatures of the respective monolayers. The energetic modeling of membrane deformation modes 
has been classical and can be reduced to the Canham-Helfrich energy density [11–13]. Lipid tilt has been recognized as 
important recently [34,35] and proved to be critical in describing the energy pathway of membrane fusion during which 
lipid directors mismatch significantly [36]. For protein inclusions with arbitrary shape we expect the lipid directors would 
also differ significantly from those away from the inclusion.

2.2. Variational principles and nonlinear PDEs for the hybrid model

Given the fixed 2-D domain S for the Monge parameterization of the membrane surfaces, the static manifold P modeling 
the protein surface, and the fixed 3-D domain � containing the entire solvated protein-membrane complex, the total energy 
G depends only on the membrane surface heights u± and the lipid directors t± , noticing that the electrostatic potential φ
depends on dielectric function ε which in turn depends on u± . We shall compute the variational derivatives of G with re-
spect to φ, ψ and u±, t± to obtain the differential equations for φ, ψ and u±, t± . For φ we will have the Poisson-Boltzmann 
equation [50,51]

−∇ · (ε∇φ) + κ2 sinh(φ) = q. (10)

For ψ we first compute

g(ψ) = δG

δψ
= δG geo

δψ
+ δGnp

δψ
= Kl

[
�s W − 1

ξ2
(3ψ2 − 1)W

]
+ 2γA, (11)

where

W = ξ�sψ + 1

ξ
(1 − ψ2)ψ. (12)

The evolution of the protein-membrane contact curves along the pseudo-time t will follow the weak gradient flow of ψ :

∂ψ

∂t
= − δG

δψ
= −Kl

(
�s W L + 1

ξ2
W L + �s W N − 3

ψ2

ξ2
W + 1

ξ2
W N

)
− 2γA, (13)

where

W L = ξ�sψ + 1

ξ
ψ, W N = −1

ξ
ψ3 (14)

are respectively the linear and nonlinear components of W such that W = W L + W N . This splitting will facilitate the nu-
merical treatment of the Allan-Cahn equation (13). Here the phase boundary is tracked without enforcing the total quantity 
of either phase, thus our model is free of the conservation constraints and the associated Lagrangian multipliers [52,22]. 
Our approach here is different from those based on the geodesic active contours [53,54], where an Euler-Lagrange equation 
is first derived for minimizing the curve energy in sharp interface formulation and then approximated using a level set form 
[27,30].

To derive the Euler-Lagrange equations for the unknowns u±, t± we recognize that the dielectric function ε also de-
pends on u± , thus we shall also consider the variational derivative of Ge with respect to u± . This derivative, by definition, 
is identical to the shape derivative of the electrostatic potential energy under the smooth velocity field induced by the 
displacement u± [42], and thus gives the electrostatic forces fe on the membrane surfaces:

f ±
e = −εs

2
|∇φ±

s |2 + εm

2
|∇φ±

m |2 + εm(∇φ±
s · n±)(∇φ±

m · n±) − cosh(φ), (15)

where φs, φm are respectively the electrostatic potentials on the solution and membrane sides. The Euler-Lagrange equations 
for u−, t− shall read

Kc�(�u− − ∇ · t− + J−
0 ) − Ke∇ · (∇u− − t− + n−

0 ) − α�u− + 2
Kα

L2
0

(u− − u+) = f −
e , (16)

(Kt + Ke)t
− − Ke(∇u− + n0) + Kc∇(�u− − ∇ · t− + J0) = 0, (17)

noticing that ε does not depend on t− so the variational derivatives of Ge do not generate a forcing term for t− . Equations 
for u+, t+ can be obtained similarly. The coupling of u with t in these equations motivates us to think of approaches to 
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decouple them to facilitate numerical treatment. The assumption of infinite two-dimensional wall on the surface of protein 
inclusion as put forward by May et al. [55,56] is not applicable to our modeling of the protein-membrane complex because 
it contradicts our consideration of the realistic protein geometry. Instead, we assume that only within a lipid tail length 
the values of Ke and n0 are constants equaling to the values right at the protein-membrane interface in May’s model [56]. 
Beyond that length different constants are taken, leading to the following piecewise definition of the two constants:

Ke

kB T
= 12

A0
, n0 = −1

2
np, 0 ≤ r ≤ h0, (18)

Ke

kB T
= 3

A0
, n0 = 0, r > h0, (19)

where np is the unit binormal vector on the protein-membrane contact curves, r is distance in the normal direction away 
from the protein surface, and A0 is the cross-sectional area of each lipid chain. Consequently, one can remove J−

0 , n−
0 from 

Equation (16) and take divergence of Equation (17) to get

Kc�(�u− − ∇ · t−) − Ke∇ · (∇u− − t−) − α�u− + 2
Kα

L2
0

(u− − u+) = − f −
e , (20)

(Kt + Ke)∇ · t− − Ke�u− + Kc�(�u− − ∇ · t−) = 0. (21)

We observe in Equations (20), (21) that

Ke∇ · (∇u− − t−) + α�u− − 2
Kα

L2
0

(u− − u+) − f −
e = −(Kt + Ke)∇ · t− + Ke�u−, (22)

and thus we can solve for ∇ · t−:

∇ · t− = − α

Kt
�u− + 2Kα

Kt L2
0

(u− − u+) + f −
e

Kt
. (23)

Put this back to Equation (16) we will get

�2u− − χ−�(u− − u+) − γ −�u− + β−(u− − u+) = f̂ −
e , (24)

with

χ− = 2Kα

L2
0(Kt + α)

, γ − = Ke

Kc
+ Ktα

Kc(Kt + α)
, β− = 2Kα

L2
0 Kc

Kt + Ke

Kt + α
,

and

f̂ −
e = Kc� f −

e − (Kt + Ke) f −
e

Kc(Kt + α)
.

A similar equation for u+ shall read

�2u+ − χ+�(u− − u+) − γ +�u+ + β+(u− − u+) = f̂ +
e , (25)

with

χ+ = −2Kα

L2
0(Kt − α)

, γ + = Ke

Kc
+ Ktα

Kc(Kt − α)
, β+ = 2Kα

L2
0 Kc

Kt − Ke

Kt − α
,

and

f̂ +
e = − Kc� f +

e − (Kt − Ke) f +
e

Kc(Kt − α)
.

Proper boundary conditions are needed for the solutions of equations we derived above. Electrostatic potential induced 
by fixed charges of the protein in the aqueous solution where εw ≈ 80 can be used as the approximate boundary conditions 
of the Poisson-Boltzmann equation (10) on ∂� [57,58]. The surface Allan-Cahn equation does not need a boundary condition 
as it is defined on the closed protein surface P . For the coupled fourth-order equations (24), (25)) we adopt the fixed 
boundary condition (homogeneous Dirichlet boundary condition for biharmonic equations) on the boundary far away from 
the protein inclusion:

u± = 0, ∇u± · n = 0, (26)
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indicating that the membrane is free of deformation on ∂�. The protein-membrane interfaces are indeed the contact curves 
of three phases: the aqueous solvent, the protein, and the bilayer. Wang et al. [31] proposed a modification of the Young’s 
contact angle [32] to include the tension energy of the contact line among solid-liquid-vapor phases:

γlv cos θ = γsl − γsv + τ

R
(27)

where θ is the equilibrium contact angle, γlv , γsl, γsv are respectively the surface tensions of liquid-vapor, solid-liquid, and 
solid-vapor interfaces, τ is the line tension and R is the radius of the base of the liquid drop in contact with the solid. 
It is interesting to recognize that if the base contact curve is a geodesic then 1/R shall be zero (i.e., the curve is locally 
straight hence has varnishing geodesic curvature) and the classical Young’s contact angle is reproduced. Therefore at our 
protein-water-lipid interface we will have

cos θ = γpl

γlw
− γpw

γlw
. (28)

The protein-water interface tension was well-estimated [59], and given the fluidity of the lipid molecules in the two-
dimensional surface we postulate that γpl ≈ γpw thus cos θ = 0, leading to an estimate that θ = π/2. This suggests that 
the two membrane surfaces are locally orthogonal to the protein surface at the protein-membrane contact curves, thus the 
following fixed boundary conditions will be adopted

u± = u±
B , ∇u± · n = θp, (29)

where u±
B are the positions of the protein-membrane contact curves and θp is the projection of the unit normal direction 

at the contact curves onto the common x − y base plane on which the Monge parameterizations of the two membrane 
surfaces are defined.

3. Numerical techniques for the nonlinear PDEs

In this section we discuss the numerical solutions of the differential equations and the convergent iterations for their 
coupling. The evolving protein-membrane contact curves on the protein surfaces present a varying dielectric interface to 
the Poisson-Boltzmann equation, so a numerical method that does not require the regeneration of interface conforming 3-D 
mesh is preferred. Here we adopt a tree-code accelerated boundary integral method for solving the Poisson-Boltzmann equa-
tion [60,61]. The molecular surface mesh of the protein-membrane complex will be updated when the protein-membrane 
contact curves evolve or the membrane surfaces are deformed with the given contact curves.

Our numerical treatments of the problem are focused on the solutions of the surface Allan-Cahn equation (13), the sur-
face deformation equations (24), (25), and their convergent coupling with the Poisson-Boltzmann equation. The C0 interior 
penalty discontinuous Galerkin (DG) method [62,22] is not applicable to the surface deformation equations as they only ad-
mit Cahn-Hilliard type boundary conditions while we have the Dirichlet boundary conditions here. Based on the DG method 
in [63] we develop an alternative C0 interior penalty method to solve the deformation equations (24), (25). Consider the 
following prototype of the surface deformation equation with Dirichlet boundary conditions (gD , gN):

�2u + β1�u + β2u = f , u = gD , ∇u · n = gN , (30)

on the annulus domain R, cf. Fig. 6(right). Let Th be a regular simplicial triangulation of R. We will use the following 
standard notions for defining discontinuous Galerkin methods:

• hT : diameter of the triangle T ∈ Th , where h = maxT ∈Th hT ,
• Eh: set of edges of the triangles in T ,
• E i

h: subset of Eh consisting of edges interior to R,
• Eb

h : subset of Eh consisting of edges on the boundary ∂R,
• |T |, |e|: the area of the triangle T , and the length of the edge e.

On an interior edge e that is shared by the two triangles T± we define the normal vector ne pointing from T− to T+ and 
the jump and average quantities:

�v� = u+ − u−, {{u}} = 1

2
(u+ + u−)

for u ∈ H1(R, Th). Here the subscripts ± signify the limit values of the function at the common edge e on the triangles T± . 
These definitions are extended to the boundary edge e ∈ Eb

h where

�v� = {{u}} = u|e.
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We associate with Th a standard quadratic Lagrange finite element space Vh = {v ∈ C(R̄) : v T = v|T ∈ P2(T ), ∀T ∈ Th}. The 
approximate solution uh ∈ Vh to Equation (30) is given by

B(uh, vh) = l(vh), ∀ vh ∈ Vh, (31)

where the bilinear form B(·, ·) and the linear functional l(·) are given, respectively, by

B(uh, vh) =
∑

T ∈Th

∫
T

(
�uh�vh + β1∇uh · ∇vh + β2uh vh

)
dx

+
∑
e∈Eb

h

∫
e

α1uh vhds

+
∑
e∈Eh

∫
e

(
−

�
∂uh

∂ne

�
{{�vh}} −

�
∂v

∂ne

�
+ α2

�
∂uh

∂ne

��
∂vh

∂ne

�)
ds, (32)

l(vh) =
∑

T ∈Th

∫
T

f vhdx +
∑
e∈Eb

h

∫
e

(
−gN�vh + α1 gD vh + β1 gN

∂vh

∂ne

)
ds. (33)

Here the penalty parameters α1, α2 are given by

α1 = C1h−3, α2 = C2h−1 (34)

for sufficiently large positive constants C1, C2 that depend only on the triangulation Th . The optimal convergence of this 
interior penalty DG method and the generalization of the analysis to higher order basis functions are given in [63].

Coupling of the deformation of two membrane surfaces demands the two equations (24), (25) to be defined on the same 
domain. However, this appears to not be the case because of the different contact curves of the transmembrane protein 
with two membrane surfaces. Since the two surfaces are expected to match point-wise we are motivated to define smooth 
a mapping between the middle plane and the base planes of two membrane surfaces. We define the interior boundary of 
the middle plane as a circle whose radius and height are the respective average radius and height of the two contact curves. 
The exterior boundary is at the middle of the exterior boundaries of the two surfaces. These mappings are numerically 
established by solving two Winslow equations [64] on the annulus domain R in the middle plane. The meshes are locally 
refined toward the contact curves where larger membrane deformations are expected, cf. Fig. 6(right).

Approximation of the surface biharmonic and surface Laplacian for the solution of Equation (13) can be done as in 
(32), (33), without terms related to the boundary conditions though, as the evolution of the phase field function is on a 
closed 2-manifold P approximated by a simplicial surface triangulation. There are many energy stable time discretization 
schemes developed for the phase-field models, including convex splitting methods [65–67], exponential time discretization 
schemes [68], IEQ schemes [69], and semi-implicit methods [70]. Many of these methods introduce a chemical potential 
as an intermediate variable to reduce the fourth-order Allan-Cahn or Cahn-Hilliard equation to two coupled second-order 
equations, which is not consistent with our discontinuous Galerkin approximation. Here the implicit method we developed 
for the surface Allan-Cahn equation [22] will be adapted. The method begins with a Crank-Nicolson approximation of the 
time derivation in Equation (13), giving rise to

ψn+1 − ψn

�t
+ Kl g(ψn+1,ψn) + 2γA = 0, (35)

where �t is the time increment. The average function g(ψn+1, ψn) is defined as

g(ψn+1,ψn) =1

2
�s ( fc(ψn+1) + fc(ψn))

− 1

2ξ2

(
ψ2

n+1 + ψn+1ψn + ψ2
n − 1)

(
fc(ψn+1) + fc(ψn)

))
(36)

with

fc(ψ) = ξ�sψ + 1

ξ
(1 − ψ2)ψ.

To solve Equation (35) which is nonlinear and implicit in ψn+1, we define inner iterations on the variable �m which is 
expected to converge to ψn+1 as m → ∞. Replacing all linear and nonlinear terms of ψn+1 respectively using �m+1 and 
�m , we can get the following inner iteration

�m+1 − ψn

�t
+ Kl g(ψn,�m,�m+1) + 2γA = 0, (37)

with the new average function
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g(ψn,ψn,�m+1) =1

2
�s f̃c(ψn,�m,�m+1) − 1

2ξ2

(
�2

m + �mψn + ψ2
n − 1)( f (�m) + f (ψn)

)
(38)

where

f̃ c(ψn,�m,�m+1) = ξ

2
�s(�m+1 + ψn) − 1

4ξ
(�2

m + ψ2
n − 2)(�m + ψn).

Now the equation (37) is linear in �m+1 as we expect:(
1 + Klξ�t

2
�2

s

)
�m+1 =ψn − Kl

[
ξ�t

2
�2

s ψn + �t

4ξ
�s(�

2
m + ψ2

n − 2)(�m + ψn)

+ �t

2ξ2
�s(�

2
m + �mψn + ψ2

n ) ( fc(�m) + fc(ψn))

]
+ 2�tγA . (39)

Since the surface phase field model can only find the local minimum of the geodesic curvature energy, we will scan 
a range of initial protein-membrane contact curves to finally find the global minimum of the total energy G defined in 
Equation (4). The full algorithm of our energetic model is summarized below.

Algorithm 3.1.

1. Define a proper range for the initial position of the bilayer with respect to the given membrane protein. Divide the range 
into small intervals for the loop in Step 2 below.

2. For each initial position of the bilayer:

(i) Update the protein-membrane interfaces by solving the surface phase field equation (39).
(ii) Update the mappings from the middle plane to the base planes of two membrane surfaces.

(iii) Update the electrostatic surface forces by solving the Poisson-Boltzmann equation with updated membrane surfaces.
(iv) Update the membrane surfaces by solving the coupled surface deformation equations.
(v) Return to Step (ii) until convergence. Save total energy G .

3. Choose the minimum G and the corresponding geometry of protein-membrane complex.

4. Model validation and computational simulations

In this section we shall first validate our geodesic curvature modeling of the protein-membrane interfaces. We will then 
present examples of mapping the base planes of membrane surfaces to the middle annulus. We will finally apply these 
validated modules of our energetic model for the determination of inclusion state of the transmembrane protein.

4.1. Validation of geodesic curvature model

We first apply our geodesic curvature model to capture the curve on a molecular surface with the well-identified local 
minimal geodesic curvature. The molecule mimics the carbon backbone of a benzene ring with six atoms in y-plane of unit 
radius respectively centered at (x, z) = (2.5, 0), (1.25, 2.165), (−1.25, 2.165), (−2.5, 0), (−1.25, −2.165) and (1.25, −2.165). 
In the first test, shown in Fig. 2, we chose the initial phase field φ = 1 for zini ∈ [−1.62, 1.52] and φ = −1 elsewhere. This 
asymmetrical initial condition allows the two initial phase boundaries to evolve toward local minima of different topology. 
The upper phase boundary evolves downward, quickly splitting into two closed curves each of which evolves toward its own 
local minimum of geodesic curvature energy. The lower phase boundary below, in contrast, is able to maintain its topology 
and evolves upward gradually settling on a local minimum. The initial position zini = 1.52 for the upper phase boundary 
is near the critical point. An initial phase boundary above this critical z-position will not split during the evolution but 
converges to a final position symmetrical to the convergent position of the phase boundary initialized at zini = −1.62
below.

In the second test, shown in Fig. 3, the surface phase field is initialized with phase boundaries at zini = −2.22 and 0.2, 
respectively. The upper phase boundary evolves upward and converges to the same local minimum found by the upper 
phase boundary in Fig. 2. The lower phase boundary, which is initially 0.6 below the lower phase boundary in the first test, 
evolves downward, shrinks and finally disappears, achieving a local minimum geodesic curvature energy of zero.

The third and fourth tests are carried out on the proton channel M2 (PDB ID: 2kqt). With a total of 3247 atoms this 
protein has a rich surface morphology with many local minima of total geodesic curvature. Fig. 4 shows the evolution of the 
two phase boundaries initially located at zini = −10, 13 Å. The upper phase boundary moves up considerably to the local 
minimum, while the lower phase boundary finds the local minimum geodesic energy after a slight adjustment of position. 
When the initial phase boundaries are changed to be at zini = −13, 11 Å, shown in Fig. 5, final phase boundaries different 
from the third test are observed. These four numerical examples illustrate that our model and numerical methods are very 
effective in capturing the initial condition-dependent local minimum of the geodesic curvature energy. In the applications to 
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Fig. 2. Snapshots in the surface phase boundary evolution on the model benzene ring at time t = 0, 0.1, 5, 12, 18. Surface triangular mesh is quasi-uniform 
with 8124 vertices and 16248 triangles. Time increment �t = 0.01, ξ = 0.1. Top: Plots of surface phase field function. Bottom: Surface mesh for the phase 
ψ = −1 highlights the phase boundaries with different history of topological change during the phase boundary evolution.

Fig. 3. Snapshots in the surface phase boundary evolution on the model benzene ring at time t = 0, 6, 14, 18, 26. Mesh and parameters are identical to the 
case in Fig. 2. Top: Plots of surface phase field function. Bottom: Surface mesh for the phase ψ = −1 highlights the phase boundaries with different history 
of topological change during the phase boundary evolution. The lower phase boundary disappears finally as a result of geodesic curvature minimization.

Fig. 4. Snapshots in the surface phase boundary evolution on the proton channel protein (PDB ID: 2kqt) at time t = 0, 20, 40, 60, 80. Initial phase boundaries 
are at zini = −10, 13 Å. Surface triangular mesh is quasi-uniform with 12470 vertices and 24940 triangles. Time increment �t = 0.01, ξ = 0.5. Left: Plots of 
surface phase field function. Right: Surface mesh for the phase ψ = −1 highlights the evolution of the phase boundaries. The pole in the center represents 
the open proton channel.
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Fig. 5. Snapshots in the surface phase boundary evolution on the proton channel protein (PDB ID: 2kqt) at time t = 0, 20, 40, 60, 80. Initial phase boundaries 
are at zini = −13, 11 Å. Mesh and parameters are identical to the case in Fig. 4. Left: Plots of surface phase field function. Right: Surface mesh for the phase 
ψ = −1 highlights the evolution of the phase boundaries.

Fig. 6. Illustration of membrane surfaces mapped to the same middle annulus. Left: A model protein with two surface phase boundaries representing the 
two contact curves with membrane surfaces. Right: The model protein is embedded in the bilayer represented as two membrane surfaces, whose Monge 
parameterizations are defined on the planes mapped from the same annulus R via respective transformations �± .

be presented in (4.3), we will scan over the full height of the membrane protein to set a range of initial phase boundaries 
and to locate the global minimum from the set of local minima.

4.2. Validation of mappings to the middle plane

We consider a model transmembrane protein and two phase boundaries on its surface modeling the protein-membrane 
interfaces, cf. Fig. 6 (left). The common middle annulus is defined as follows. First, the geometrical centers and radii of the 
upper and lower phase boundaries are found. These define the position of the base planes for the two membrane surfaces. 
The average radii and average height (z-coordinate) will be used as the inner radius of middle annulus and its z-coordinate. 
This middle annulus is then discretized on the polar coordinate, with its uniformly discretized inner circle mapped to 
quasi-uniformly discretized upper and lower phase boundaries. Together with the mapping between the discretized exterior 
circles, we have the boundaries of the two base planes mapped to the middle annulus.

The inhomogeneous Thompson-Thames-Mastin elliptic grid generator ([64], Page 98) is adopted to produce interior mesh 
grids for the two base planes that are dense near the protein-membrane interfaces, cf. Fig. 6 (right). The quadrilateral grid 
meshes are then triangulated for the solution of Eq. (24), (25) using the interior penalty discontinuous Galerkin method 
described above. The vertices of the triangulated meshes for the two membrane surfaces inherit the one-to-one correspon-
dence established on the mesh grids, allowing us to compute the coupling terms (u− − u+) and �(u− − u+) in the two 
surface deformation equations. It is worth noting that by using the numerical mappings we do not change the physical do-
mains or coordinate systems of the two membrane surfaces. The mappings are introduced merely to establish a one-to-one 
correspondence between the two membrane surfaces. Therefore one does not need to transform the surface deformation 
equations because of these numerical mappings of the computational domains.
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Fig. 7. Surface phase fields with different initial phase boundaries (top) and the corresponding equilibrium fields (bottom). From left to right: zini =
±8, ±10, ±12, ±14 Å.

Fig. 8. Equilibrium top (u+) and bottom (u−) membrane surfaces obtained with different initial phase field boundaries at z = ±8, ±10, ±12, ±14 Å, from 
left to right.

4.3. Membrane morphology induced by protein inclusion

After validating the evolution of the surface phase field function and the mapping to the middle annulus, we are now 
at a position to apply these methodologies on the determination of membrane morphology induced by a protein inclusion. 
We consider a single M2 protein embedded in a homogeneous phosphatidylcholine (POPC) bilayer with equilibrium thick-
ness L0 = 26 Å. Although the height of protein is comparable to the bilayer thickness we will still expect a considerable 
compression of the bilayer in the vicinity of protein inclusion because the protein-membrane interfaces are highly curved. 
The mechanics and dielectric parameters of the POPC bilayer are taken from [10]. The outer radius of the middle common 
annulus is 100 Å. The inner radius is about 12 to 15 Å, depending on the position of the protein-membrane interfaces. The 
values of other parameters are Kc = 10.8, KG = −9.8, α = 0.004, Kα = 0.33, kt = α, all in the unit of kcal/mol.

We first look at the protein-membrane interfaces modeled as the phase boundaries with different surface phase field 
initializations zini = ±8 ∼ ±14 Å. As shown in Fig. 7, the top phase boundary does not change when the initial position 
is placed at 8 ≤ zini ≤ 12.5 Å as they will be trapped to the same position with a local minimum geodesic curvature 
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Table 1
Energies in kcal/mol corresponding to different modes of bilayer deformation when the initial 
membrane-protein contact curves are varied.

zini ±8 ±9 ±10 ±11 ±12 ±13 ±14

Splay −310.7 −305.6 −292.1 −350.2 −365.6 45.72 −183.23
Saddle splay 2.11 1.13 0.96 −6.87 −13.56 27.54 6.99
Surface tension 1.50 1.02 0.65 0.36 0.24 0.60 0.54
Compression 196159 136287 88400 47046 16106 534.2 8382
Tilt-stretch 0.75 0.51 0.32 0.19 0.13 0.20 0.24

Fig. 9. Embedding of M2 channel in the bilayer with zini = ±8 Å (left) and zini = ±13 Å (right).

energy is observed. The bottom interface stays at the same local minimum for −11.3 ≤ zini ≤ −8 Å, and then moves to 
another local minimum for a lower initial phase boundary. We will consider these initial protein-membrane interfaces and 
apply Algorithm 3.1 to find the equilibrium membrane surfaces with minimum total energy, and the results are shown in 
Fig. 8. For zini = ±8 Å or ±10 Å, the corresponding equilibrated protein-membrane interfaces are identical and located near 
z = −6 Å and z = 8 Å, respectively. The two membrane surfaces have to bend significantly to match these inner boundaries 
as their exterior boundaries are clamped at z = ±13 Å. This shall generate large bending and compression energies, see also 
Table 1. When the initial phase boundaries are placed further apart at |zini | > 11.3 Å, the new bottom protein-membrane 
interface promotes the curving of the membrane near the protein, shown as the peaking of saddle splay energy in the table, 
see also the variation of the membrane heights near the protein in Fig. 8, where the four peaks of the displacement signify
the quatermer structure of M2.

The significant increase of bilayer compression near the embedded protein from zini = ±8 Å to zini = ±13 Å is also 
illustrated in Fig. 9. Maximum energy for saddle splay is observed at zini = ±13 Å, indicating the largest negative Gaussian 
curvature is generated, a feature that is well observed in small angle X-ray scattering and molecular dynamics simulations 
[71,72]. However, this negative Gaussian curvature is confined to a small neighborhood near the embedded protein. We 
attribute this confinement to the homogeneous Dirichlet (aka clamped) boundary condition (26). In experiments the far 
boundary is not clamped while in molecular dynamics simulations a periodic boundary condition is usually chosen. A more 
realistic boundary condition on the exterior edge of the annulus would be

�u = 0,
∂�u

∂n
= 0, (40)

i.e., the membrane is stress-free there. However, there does not exist a robust numerical method for biharmonic equations 
with mixed boundary conditions in arbitrarily complicated 2-D domain. Recently emerged weak Galerkin method might pos-
sess the flexibility of approximating fourth-order equations with mixed boundary conditions (Dirichlet boundary conditions 
(29) on the inner edge and stress-free boundary condition on the exterior edge).

5. Conclusion

In this paper we propose a geodesic curvature energy model for characterizing the protein-membrane interfaces. These 
interfaces represent the essential information of the boundaries in the continuum or hybrid modeling of bilayer membrane 
morphology induced by embedded proteins. Along with a surface phase field approximation of the geodesic curvature, 
our efforts present a computationally tractable geometrical characterization of the boundary conditions for the protein-
membrane interactions. To further completely couple the surface morphology of two leaflets we first envision an annulus 
located between two surfaces and then construct conformal mapping between individual surface and the middle annu-
lus through numerical grid generation. We integrate these two new features into a general energetic functional model of 
protein-membrane interactions. Numerical experiments demonstrate that our methods are efficient and robust in locating 
the highly complicated protein-membrane interfaces and the corresponding membrane morphology.

Our work can be improved and extended mathematically and computationally in several different directions. A stress-
free boundary condition on the exterior edge of membrane shall better reflect the local mechanical constraint, and we are 
currently developing a weak Galerkin finite element method for solving the resulting fourth order equations with mixed 
boundary conditions. Secondly, the manual scanning on the protein surface for locating a global minimum of total geodesic 
curvature can be replaced by a surface Allan-Cahn equation with stochastic forcing term (or a stochastic term directly 
added to the total geodesic curvature energy) that could provide an additional force driving the evolving surface phase 
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boundary from a local minimum to the global minimum. Finally, force and torque balance equations can be introduced to 
the transmembrane protein to better describe the tilting and orientation of the embedded protein.
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